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Abstract Predicting volatility is a critical activity for

taking risk adjusted decisions in asset trading and al-

location. In order to provide effective decision-making

support, in this paper we investigate the profitability

of a deep Long Short Term Memory Neural Network

(LSTM) for forecasting daily stock market volatility us-

ing a panel of 28 assets representative of the Dow Jones

Industrial Average index combined with the market fac-

tor proxied by the SPY and, separately, a panel of 92

assets belonging to the NASDAQ 100 index. The Dow

Jones plus SPY data is from January 2002 to August

2008, while the NASDAQ 100 is from December 2012

to November 2017.

If, on one hand, we expect that this evolutionary be-

havior can be effectively captured adaptively through
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the use of Artificial Intelligence (AI) flexible methods,

on the other, in this setting, standard parametric ap-

proaches could fail to provide optimal predictions. We

compared the volatility forecasts generated by the LSTM

approach to those obtained through use of widely rec-

ognized benchmarks models in this field. In particular,

univariate parametric models such as the Realized Gen-

eralized Autoregressive Conditionally Heteroskedastic

(R-GARCH) and the Glosten-Jagannathan-Runkle Mul-

tiplicative Error Models (GJR-MEM). The results demon-

strate the superiority of the LSTM over the widely

popular R-GARCH and GJR-MEM univariate para-

metric methods, when forecasting in condition of high

volatility, while still producing comparable predictions

for more tranquil periods.

Keywords deep learning · LSTM · time series ·
forecasting · volatility

1 Introduction

Asset management decisions made by investors with

global portfolios of equities, bonds and other asset man-

agement instruments are driven by the fundamental

principle of maximizing the expected return on a given

level of risk. These decisions include the allocation of as-

sets through trading in asset management instruments

subject to price changes in order to obtain the best com-

bination of risk and reward (known as the risk-reward

trade-off) that takes into account the investor’s specific

assets and objectives.

There is no doubt that the decision on how to invest

heritage lies primarily in the ability of human judge-

ment to recognise opportunities for return based on the

economic, social and political context and the events
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that condition its evolution. The altered context trans-

lates into a change in the attractiveness of asset man-

agement assets, i.e. in their value and in turn in the

price that can lead to gains or losses.

Another element that helps to change the price is

those factors that specifically affect a company, a sec-

tor or even a country. Prudent management relies on

decisions to diversify investments between assets with

a negative price correlation, i.e. assets whose price tends

to move in opposite directions. In this way, any losses

in value on certain assets can be offset at least in part

by returns on other assets. Finally, trading activity and

the additional element that contributes significantly to

the price fluctuations of an asset. It reflects the ability

to cross supply and demand on the asset management

markets.

Therefore, risk, return and asset correlation are the

key measures used in asset management management

models. Quantifying the potential loss of assets is a

major part of risk management, trading in asset man-

agement markets and asset allocation. To be able to

measure these losses and make informed investment

decisions, investors need to estimate risks [8]. Since

volatility has some well-known statistical regularities

that make it inherently forecastable, it is among one

of the most accepted and used measures of risk in the

financial market. These regularities include the volatil-

ity clustering effect, leading to positive and persistent

auto-correlations of volatility measures, the leverage ef-

fect, which is related to the negative correlation be-

tween past returns and current volatility values, and

the dynamic cross-correlation between the volatilities

of different assets that give rise to the well-known phe-

nomenon of volatility spillovers. In addition, it is worth

remembering that volatility is a key ingredient for com-

puting more refined risk measures such as the Value at

Risk or the Expected Shortfall.

Predicting volatility is challenging task, where mod-

ern artificial intelligence can come at rescue. Conven-

tional techniques, mostly based on GARCH modeling

and its variant, are not able to consider a market as a

whole, thus volatility spillovers. In this paper, we aim

to show that deep learning can help to build models

of volatility forecasting, discussing properties and ex-

perimental results. In particular, the paper focuses on

LSTM as an effective tool for the purpose of estimating

the forecasting volatility.

In the evaluation of volatility forecasts, identifying

the underlying market regime is of fundamental impor-

tance, as generating accurate predictions is more im-

portant in periods of higher volatility of the stock mar-

kets rather than in more tranquil periods. In fact, in

periods of greater price variability, such as those that

accompany and follow periods of economic and finan-

cial crisis, the timing risk in trading operations exposes

to a greater risk of large losses. It is, at this stage, im-

portant to be aware that the forecasting performance

of different approaches to volatility forecasting can be

highly dependent on the market regime, as identified in

terms of the corresponding long-run volatility level. An

obvious consequence is that the (ex-ante) identification

of the best performing model could, and should, take

into account the underlying volatility level.

Despite the significant progresses in the field of fi-

nancial econometrics, see e.g. [28,38], and artificial in-

telligence, this task is still very complex and expert

judgement still plays a fundamental role in recognizing

the factors that anticipate and characterize moments of

high uncertainty in the markets. This is due to the fact

that, adequately supported by the outcome provided by

quantitative forecasting models, human intervention is

able to convey heterogeneous sources of information, of

both quantitative and qualitative nature, that would be

otherwise hardly embedded in any formalized quantita-

tive forecasting approach.

In this paper we propose a model for volatility pre-

diction that is based on LSTM. Comparison, to exist-

ing approaches, namely R-GARCH and GJR-MEM, to-

gether with conventional RNN, is performed with re-

spect to different volatility regimes, in order to point-

out how the identification of the market volatility regime

is important for identification of the optimal forecasting

model.

LSTM effectiveness is showcased by using a panel

of 28 assets representative of the Dow Jones Industrial

Average index combined with the market factor proxied

by the SPY and, separately, a panel of 92 assets belong-

ing to the NASDAQ 100 index. The Dow Jones plus

SPY data is from January 2002 to August 2008, while

the NASDAQ 100 is from December 2012 to November

2017. Both markets, in the periods considered, were af-

fected by extremely critical events as the global finan-

cial crisis (GFC) of 2007-2008 and the consequences

of the European debt crisis 2011-2012, which led to

changes in the level and dynamics of market volatility

during and after the crisis.

The remainder of the paper is structured as fol-

lows. An overview of related literature is given in Sec-

tion 2. The data used in the empirical application and

the investigated techniques are described in subsection

3.1. The LSTM approach and the related experimen-

tal setup are briefly discussed in subsections 3.2 and

3.3. The two parametric competitors used as bench-

marks in our empirical analysis, i.e., the R-GARCH and

GJR-MEM, are presented in subsections 3.4 and 3.5 re-

spectively, while subsection 3.6 introduces the two loss
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functions used for training the models and the metrics

for out-of-sample forecast evaluation. The empirical re-

sults of the out-of-sample forecasting comparison are

presented and discussed in Section 4, followed by the

comparison with Recurrent Neural Networks in Section

5. Conclusions are given in Section 6.

2 Related work

As the prediction of volatility is a major factor in risk

analysis, many efforts have been made to implement

parametric as well as non-parametric predictive meth-

ods for forecasting future volatility. Depending on the

reference information set, the proposed approaches can

be classified into two broad categories. Of these, the

first includes approaches fitted to time series of daily

log-returns. In the parametric world, this class of meth-

ods includes the Generalized Autoregressive Condition-

ally Heteroskedastic (GARCH) models [9] and their nu-

merous univariate and multivariate recent extensions

[6,19,34,63]. In the non-parametric world, we recall a

consistent number of papers applying non-parametric

approximators of squared returns (such as smoothing

splines [41,70] or neural networks to time series [18,

39,65]) which provides an unbiased but noisy volatility

proxy.

The second and more recent class of approaches for

volatility forecasting replaces this noisy volatility proxy

with more efficient realized volatility measures [3] built

from time series of high-frequency asset prices. Notable

examples of parametric models falling into this second

class are the Multiplicative Error Models (MEM) [17]

and the Realized GARCH (R-GARCH) [31] techniques.

The main structural difference between R-GARCH and

MEM models is that R-GARCH uses bivariate infor-

mation on log-returns and realized volatility, whereas

MEM are directly fitted to a univariate realized volatil-

ity series - log-returns are eventually used only as ex-

ternal regressors for capturing leverage effects. Simi-

larly, in a non-parametric environment, neural networks

[45] or other non-parametric filters [11] can be applied

to time series of realized volatility measures to fore-

cast future volatility. See also Han and Zhang [29] non-

parametric volatility modeling for non-stationary time

series.

Several extensions have been proposed to paramet-

ric models. For instance in [2] the authors suggest that

the total return variation process can be separated in

jumps and non-jumps movements, where almost all of

the predictability in daily, weekly, and monthly return

volatilities comes from the non-jump component. Build-

ing on this idea, Maciel, Ballini and Gomide [44] inves-

tigated evolving possibilistic fuzzy modeling to forecast

realized volatility with jumps. Their possibilistic model

improves robustness to noisy data and outliers, which is

an essential requirement in financial markets volatility

modeling and forecasting.

All above-discussed approaches are univariate. Nev-

ertheless, the presence of phenomena such as common

features and volatility spillovers make the analysis of

multivariate volatility panels potentially very profitable.

In a parametric setting, however, the number of re-

quired model parameters explodes rapidly as the cross-

sectional dimension of the panel increases, making the

estimation unfeasible even for moderately large dimen-

sions, unless some heavy, and untested parametric re-

strictions are imposed.

Typically, it is often assumed that all the volatilities

in the panel share the same dynamic dependence struc-

ture and volatility spillovers are not present [47]. Those

assumptions are clearly unrealistic and they greatly re-

duce the ability of the parametric models, albeit mul-

tivariate, to describe the complexity of the dynamic

structure which is observed in financial time series. These

considerations contribute to the scarce attention that

multivariate models for volatility panels have received

in the literature on parametric modelling of financial

time series.

Feed-forward neural networks are a favorite class of

multivariate, non-parametric models used to study de-

pendencies and trends in the data, e.g., using multiple

inputs from the past to predict the future time step [10].

However, when using traditional neural network mod-

els, much effort is devoted to making sure that what is

presented for training in the input layer is already in

a format that allows the network to recognize the sig-

nificant patterns (“feature engineering”). This process

usually requires some ad-hoc procedures and soon be-

comes one of the most time-consuming parts of neural

network modeling. In a deep learning framework in-

stead, by adding more and more layers between input

and output (hence “deep”), the model allows richer in-

termediate representations to be built and most of the

feature engineering process can be achieved by the algo-

rithm itself, in an almost automatic fashion. This latter

point improves prediction accuracy and strongly widens

the domains of applications. As a drawback, deep learn-

ing models require a large amount of data to outperform

other approaches and are computationally expensive to

train. However, in financial applications, a large amount

of data can be quickly gathered, making deep learning

applications appropriate and viable.

The main focus of this paper is on proving the ef-

fectiveness of using deep learning techniques for multi-

variate volatility forecasting. In particular, a deep Long

Short TermMemory Neural Network (LSTM) [33] is ap-



4 Alessio Petrozziello et al.

plied. LSTMs can have several advantages compared to

the modeling approaches used so far in the literature.

The application of this class of models to multivari-

ate volatility forecasting is particularly appealing since

it allows to overcome the curse of dimensionality typ-

ically limiting the application of complex multivariate

parametric models.

Firstly, they can be seen as non-parametric statis-

tical models, and consequently, they do not suffer from

the misspecification problems which typically affect para-

metric modeling strategies. Secondly, they can over-

come the curse of dimensionality problem which af-

fects both standard non-parametric estimation tech-

niques and several multivariate parametric models [50].

This makes the use of LSTMs feasible even for high di-

mensional temporal datasets. Moreover, they do not re-

quire any undesirable reduction of the parameter space

through untestable, unrealistic restrictions, which, oth-

erwise, might significantly reduce the ability of the model

to reveal well-known stylized facts about multivariate

financial time series (such as spillovers and complex dy-

namics). Finally, they can benefit from modeling com-

plex non-linear and long-term dependencies, leading to

improved accurate predictions [20].

One of the main benefits of using a recurring net-

work such as LSTM is the ability to make the prediction

adaptive to time. The concept of internal state/memory

translates into an implicit stretching or warping of the

time axis. This detail is well known to those involved in

speech analysis, since the correspondence between pat-

terns must necessarily take into account an inevitable

misalignment along the time axis. In the financial do-

main we are dealing with in this paper, this translates

into the need to consider a misalignment of the time

series of asset prices or volatility in a market, due to

market inefficiencies or propagation between sectors. To

solve this problem, one of the most popular techniques

is dynamic time warping (DWT) [35]. This aspect has

been very recently taken up and generalized by Rivest

and Kohar [52]. In their work, they propose squared

timing error (STE) as a new cost function of timing

error that incorporates the principles of DWT. Among

the various experiments, they also consider a price pre-

diction problem in finance. Their method focuses on

binary time series. In this case, they try to determine

when a price exceeds a certain threshold. In the exper-

iment they assume the closing prices of the shares that

make up the NASDAQ-100 index in the period from

April 1, 2013 until March 31, 2014. They calculate the

14-day moving average, assuming as threshold 0.7 of

historical volatility in the same period, i.e. the 14-day

moving standard deviation.

However, the advantage of using a recurring net-

work, whether LSTM or any other architecture, is pre-

cisely in incorporating propagation effects into hidden

state units. The question of how to make the inter-

nal memory of a recurring network effective has been

the focus of many recent developments. Yu at al. [68]

offer an extensive overview of them. Besides the pio-

neering work of Hochreiter and Schmidhuber [33] that

led to the definition of LSTM, it is worth to mention

the contributions given by Cho et al. [12] regarding the

Gated Recurrent Unit (GRU), by Kalchbrenner, Dani-

helka and Graves [37] for Grid LSTM, by Shi et al. [53]

for Convolutional LSTM. A different approach is fos-

tered by Graves, Wayne and Danihelka [27] for their

Neural Turin Machine, suggesting to make explicit into

the architecture an external addressable memory. Fol-

lowing this idea, one of the latest developments in this

area is offered by Quan et al. [51], where they propose

to equip a RNN with an external addressable work-

ing memory (EAWM). This makes short and long-term

information explicit and directly manipulable, letting

SGD to train the network end-to-end.

Following a similar approach, Nápoles et al. [46] pro-

pose long-term cognitive network (LTCN) as a neural

cognitive mapping technique able to store long-term de-

pendencies between input and output sequences, espe-

cially in a context where values of several dependent

variables have to be predicted. The approach consists

in preserving the knowledge of the expert encoded in

a matrix of weights, trying to optimize the non-linear

relationship offered by the activation function of each

neuron. In this sense, the training algorithm is called

non-synaptic back-propagation.

Most of the above work focuses on sequence analysis

in natural language processing problems, in particular

machine translation, text comprehension and text gen-

eration. Although LSTM is now a tool made available to

finance (e.g. see [59]), at the best of our knowledge the

method proposed in this paper is novel as no attempt to

specify and estimate a comprehensive non-parametric

volatility forecasting model for the whole market has

been made so far. In particular, nobody approached

the problem using Deep Learning (i.e., LSTM).

3 Materials and Methods

As mentioned above, the methodology proposed in this

work is based on the application of Long Short Term

Memory Neural Network (LSTM) for the forecast of

the volatility of the assets at a particular time, given

its past values.
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3.1 Data

Two datasets are used for the empirical experimenta-

tion. The first dataset used by Hansen et al. [31], in-

cludes 28 assets from the Dow Jones Industrial Average

(DJI 500) index plus one exchange-traded index fund

SPY, that tracks the S&P 500 index. The sample spans

the period from 1st January 2002 to 31st August 2008,

including 1549 trading days. The second dataset is re-

lated to 92 stocks belonging to the NASDAQ 100 index

within the period 1st December 2012 to 29th November

2017, for a total of 1256 trading days. Further detail on

the two datasets can be found in Table 1 and Table 2

respectively1.

Each asset is represented by two different time se-

ries, the realized measure, namely volatility, and the

related open-close return. The realized measure vt is

given by a realized kernel estimator computed using the

Parzen kernel function. This estimator is similar to the

realized variance, and more importantly, it is robust to

market micro-structure noise and is more accurate than

the quadratic variation estimator. The implementation

of the realized kernel follows the method proposed by

Barndorff-Nielsen et. al. [4] that guarantees a positive

estimate.

3.2 Long Short Term Memory Network

Long Short Term Memory Network (LSTM) [22,33] is

a Recurrent Neural Network (RNN) architecture that

acts as a Universal Turing Machine learner: given enough

units to capture the state and a proper weighting ma-

trix to control its evolution, the model can replicate the

output of any computable function.

Because of this noticeable characteristic, LSTM is

largely employed in tasks of sequence processing, e.g., in

natural language processing [54,58] [67], speech recog-

nition [26,30,56], automatic control [23,32], omics sci-

ences [42,43], and others. The LSTM networks are gain-

ing increasing interest and popularity in time series

modeling and prediction, as they can model long and

short range dependencies [7,69].

There are several variations [25,62,64] of the orig-

inal model proposed by Hochreiter and Schmidhuber

[33]. In this paper we adopt the model presented by

Graves [25] (Figure 1a) which is governed by the set of

equations given below:

1 The data is publicly available on the following Zenodo
repository https://zenodo.org/record/2540818
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Fig. 1: LSTM architecture as presented by Graves

[25]. Figure 1a shows the internals of a specific cell,

while Figure 1b shows how the sequence is propagated

through the LSTM cells.

it =σ(Wxixt +Wlilt−1 +Wcict−1 + bi), (1)

ft =σ(Wxfxt +Wlf lt−1 +Wcfct−1 + bf ), (2)

ct =ftct−1 + it tanh(Wxcxt +Wlclt−1 + bc), (3)

ot =σ(Wxoxt +Wlolt−1 +Wcoct + bo), (4)

lt =ot tanh(ct). (5)

The core of the LSTM is represented by the ct which

acts as a memory accumulator of the state informa-

tion at time t. The state evolves according to Eq.(3),

subject to two elements - the “forget gate” and the

“input gate”, represented at time t by the variables ft
and it respectively. The role of ft is to erase the mem-

ory ct−1 according to the current input xt (comprising

open-close return and volatility), the state lt−1 and the

memory ct−1 (Eq.(2)). The forget gate is counterbal-

anced by the input gate, (Eq.(1)) that, making use of

the same information has instead the role of reinforcing

or replacing the memory by activating a combination

xt and lt−1 (Eq.(3)). These last functions, as those gov-

erning the activation of ft and it are learned as single-

layer perceptrons using the logistic function σ (Eq.(1)

and Eq.(2)), or the tanh function (Eq.(3)) as activa-

tion, where bi, bf and bc are the respective biases. Once

the memory is recomputed at time t, the LSTM emits

the output ot as a function of xt, lt−1 and the mem-
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Table 1: Dow Jones Industrial Average assets used as case study. Capitalization is given with respect to 4th August

2017 values.

Symbol Name Sector Capitalization (USD)

AA Alcoa Corp Materials 6.89B
AIG American International Group Financials 58.79B
AXP American Express Financials 75.99B
BA Boeing Industrials 140.50B
BAC Bank of America Financials 245.97B
C Citigroup Financials 187.94B
CAT Caterpillar Industrials 67.58B
CVX Chevron Energy 208.66B
DD EI du Pont de Nemours Materials 71.17B
DIS Disney Consumer Discretionary 168.52B
GE General Electric Industrials 223.20B
GM General Motors Consumer Discretionary 51.39B
HD Home Depot Consumer Discretionary 182.62B
IBM IBM Information Technology 135.28B
INTC Intel Information Technology 170.57B
JNJ Johnson & Johnson Health Care 357.45B
JPM JPMorgan Chase Financials 329.58B
KO Coca-Cola Consumer Staples 194.07B
MCD McDonald’s Consumer Discretionary 125.37B
MMM 3M Industrials 123.92B
MRK Merck Health Care 172.59B
MSFT Microsoft Information Technology 559.80B
PG Procter & Gamble Consumer Staples 231.51B
T AT&T Telecommunication Services 235.96B
UTX United Technologies Industrials 97.04B
VZ Verizon Telecommunication Services 199.52B
WMT Wal-Mart Consumer Staples 242.61B
XOM Exxon Mobil Energy 339.86B

SPY SPDR S&P500 ETF Trust - (Net Assets) 242,54B

Table 2: NASDAQ 100 assets used as case study.

Sector Symbol

Capital Goods ILMN, KLAC, PCAR, PCLN, TSLA
Consumer Non-Durables CTAS, HAS, MDLZ, MNST
Consumer Services AMZN, CHTR, CMCSA, COST, DISCA, DISCK, DISH,

DLTR, EXPE, FAST, FOXA, FOX, LBTYA, LBTYK,
LVNTA, NFLX, ORLY, PAYX, QVCA, ROST,
SBUX, SIRI, TSCO, ULTA, VIAB, WYNN

Health Care ALGN, ALXN, AMGN, BIIB, CELG, ESRX, GILD,
HOLX, HSIC, IDXX, INCY, ISRG, MYL, SHPG, XRAY

Miscellaneous AKAM, CTRP, EBAY, MELI, NTES
Public Utilities VOD
Technology AAPL, ADBE, ADI, ADP, ADSK, AMAT, ATVI,

AVGO, BIDU, CA, CERN, CHKP, CSCO, CTSH,
CTXS, EA, FB, FISV, GOOGL, INTC, INTU,
LRCX, MCHP, MSFT, MU, MXIM, NVDA, QCOM,
STX, SWKS, SYMC, TXN, VRSK, WDC, XLNX

Transportation JBHT

ory ct (Eq.(4)). This latter function is also learned as a

single-layer perceptron and finally, the LSTM computes

the state lt as given by Eq.(5). Figure 1b shows how a

sequence is propagated through the LSTM.

The main advantage of this architecture is that the

memory ct is refreshed under the control of gates so that

the gradient is limited to the last stage (also known as

constant error carousels [21,22]) and prevented from

vanishing too quickly. This latter issue is a critical one

and a well-known limitation of RNN based on older ar-

chitectures, such as the Elman’s and Jordan’s reference

models [36,48].

Because the LSTM learning function can be de-

composed into multiple intermediate steps, LSTMs can

be “stacked” such that the information produced by

one LSTM step becomes the input to another. This

“stacked” architecture has been applied to many real-

world sequence modeling problems [55,66].

3.3 Experimental Setup

The proposed model is a 2-layer stacked LSTM made of

2n input and n output units respectively, with n being

the number of assets. This means 58/29 for DJI 500 and

184/92 for NASDAQ 100. The output of the top LSTM

is given as input to a dense activation layer designed to

provide the model’s output (see Figure 2 for a schematic

description of the model). The hidden activation func-

tion is a hyperbolic tangent, while the recurrent activa-

tion is a hard sigmoid (default activation functions for

LSTM, as advised in [33]). To avoid negative forecasts
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(the realized volatility is always continuous positive), a

softplus function is used in the output layer.

Two topologies of LSTM are tested and evaluated:

univariate and multivariate.

LSTM-1 has a univariate architecture (one model

independently trained for each asset) so takes as input

only one asset at a time (open-close return and volatil-

ity for a chosen past window (rt−k, .., rt−1, vt−k, .., vt−1))

and produces as output the one-step-ahead volatility

(vt).

LSTM-n has a multivariate architecture, where a

single model is trained using all the assets. This ver-

sion takes as input the daily returns and volatilities for

a given past window (rit−k, .., r
i
t−1, v

i
t−k, .., v

i
t−1), i =

1, . . . , n and outputs the n one-step-ahead volatility (vit,

i = 1, . . . , n), where n = 29 for DJI 500 and n = 92 for

NASDAQ 100.

Fig. 2: The proposed model for DJI 500 is a stack of

two LSTM with 58 and 29 neurons each and a dense

activation layer on the top. The size of the dense layer

is one in the univariate approach (LSTM-1) and 29 in

the multivariate one (LSTM-29)

The model is pre-trained by using the first 300 days

of our dataset with a look-back window of 20 days. Sub-

sequently, a rolling forecast is applied from day 301

onward. In particular, every time the one-step-ahead
volatility is predicted, its observed features (realized re-

turn and volatility) are used to refine the network state,

before moving the time window one step. This proce-

dure allows having an up-to-date network, every time

new information is available.

To avoid the look-ahead bias, the walk-forward test-

ing technique [40] has been applied on the initial year

of trading data and a grid search used to optimise the

hyper-parameters of the network. The validation is per-

formed by scanning the data using a sliding window of

length m (i.e., the look-back) on which the model is

trained on, and subsequently predicting on the follow-

ing n samples (in our case, with one-step-ahead predic-

tion, n = 1). When the end of this subset is reached the

optimization window is shifted forward by n. The grid

search boundaries and optimal values are reported in

Table 3. The optimal number of training epochs on the

initial data was found to be in line with the optimal

number of days used for pre-training (i.e., 300 days),

while the number of epochs for the rolling period had its

best value consistent with the size of the look-back (i.e.,

20 days, equivalent to four weeks of trading data). We

observed that a smaller number of epochs would pro-

duce an under-fitted network (smooth forecast trending

with the average of the last few data points), while a

longer training would produce an over-fitting network

(giving a lot of weight to the most recently shown data

point). Furthermore, a larger look-back would impact

the convergence (probably due to the vanishing gradi-

ent problem). In addition, dropout, a standard regu-

larization technique used for deep learning models, was

used to avoid over-fitting, and its best value was found

to be around 0.20, as also suggested in [61]. Lastly, we

employed two loss functions to train our model, which

are described in Section 3.6.

3.3.1 LSTM computational complexity

In this section we report the computational complexity

of our proposed univariate and multivariate models.

The LSTM computational complexity can be es-

timated by calculating the number of operations and

number of trainable parameters of the model.

Considering a network taking input vectors of sizem

and giving output vectors of size n, the LSTM has a set

of 2 matrices: U of dimension nm and W of dimension

nn for each of the three gates and one set for updating

the cell state. Lastly there is a set of n biases.

The memory complexity (number of trainable weights)

of the LSTM can be calculated with the the following

formula: 4(nm+ n2 + n).

The time complexity (i.e., number of operations re-

quired to perform one training step), is calculated as
follows. A matrix multiplication requires mn multipli-

cations and m(n − 1) additions, this needs to be done

for mn elements, so the complexity is mn(n+ (m− 1))

= n2m+ nm2 − nm

This operation is done for each gate (3), for the

cell state, and for the number of time steps (k = 20),

4k(n2m+ nm2 − nm).

While the number of operations required for one

epoch grows with the size of the inputs and outputs

of the model, the computational need is still negligible

when compared to the available computational power

when employing a GPU card. For instance, the biggest

multivariate model trained in the empirical experimen-

tation, requires roughly 744 million operations for one

epoch, while the graphic card we used (i.e., NVIDIA

GeForce 1070) has a computational power of 6.5 TFLOPS,

which allows to run 9 epochs per second.

Table 4 reports the total number of weights and

number of operations for each of the models trained in

the empirical experimentation.
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Table 3: Hyper-parameters for the LSTM. The optimal value of each hyper-parameter has been selected through

a grid search on the defined range.

Hyper-parameter Range of optimization Optimal value

Dropout [0, 0.6] every 0.1 0.2
Number of training epochs on pre-training data [100, 400] every 50 300
Number of training epochs on rolling window [10, 30] every 5 20
Look-back [5, 100] every 5 20
Loss function MSE and QLIKE QLIKE

Table 4: The following table reports for each LSTM the number of trainable weights and the number of operations

required for one training epoch. Since in the univariate approach one model for each asset is trained individually,

the number of weights and operations, is multiplied by the number of assets (29 for the DJI500 and 92 for the

NASDAQ100).

LSTM-1 DJI 500 LSTM-29 DJI 500 LSTM-1 NASDAQ 100 LSTM-92 NASDAQ 100

First LSTM Input (m1) 1 29 1 92
First LSTM Output (n1) 58 58 184 184
Second LSTM Input (m2) 58 58 184 184
Second LSTM Output (m2) 1 29 1 92
Number of trained models 29 1 92 1
Number of Weights 410640 30624 12662880 305808
Number of Operations 15608960 23144320 498360320 744832000

3.3.2 Data Standardization

Before training the model, the data are standardized

with 0-mean and 1-variance. Since our features are in

IR+, for each sample (r2t , vt), its negative (−r2t , −vt) is

added to the data (to have a perfect bell shaped dis-

tribution). The resulting distribution is already mean-

centered, hence the values are divided by their stan-

dard deviation and finally, the added negative values

are dropped to restore the original set of observations.

3.4 Realized GARCH (R-GARCH)

The Realized GARCH introduced by [31] has extended

the class of GARCH models by replacing, in the volatil-

ity dynamics, the squared returns with a much more ef-

ficient proxy such as a realized volatility measure. The

structure of the R-GARCH(1, 1) in its linear formula-

tion is given by:

rt = µ+
√
ht zt, (6)

ht = ω + β ht−1 + γ vt−1, (7)

vt = ξ + φht + τ(zt) + ut, (8)

where zt∼i.i.d.(0, 1) and ut∼i.i.d.(0, σ2
u) with zt and

ut being mutually independent. The first two equa-

tions are the return equation and the volatility equa-

tion that define a class of GARCH-X models, including

those estimated in [60], [16], and [5]. The GARCH-X

acronym refers to the fact that vt is treated as an ex-

ogenous variable. It is worth noting that most variants

of ARCH and GARCH models are nested in the R-

GARCH framework. The measurement equation is jus-

tified by the fact that any consistent estimator of the

Integrated Variance can be written as the sum of the

conditional variance plus a random innovation, where

the latter is captured by τ(zt) + ut. The function τ(zt)

can accommodate leverage effects, because it captures

the dependence between returns and future volatility.

A common choice [31], that has been found to be em-

pirically satisfactory, is to use the specification:

τ(zt) = τ1 zt + τ2(z
2
t − 1). (9)

Substituting the measurement equation into the volatil-

ity equation, it can be easily shown that the model im-

plies an AR(1) representation of ht:

ht = (ω + ξγ) + (β + φγ)ht−1 + γ wt−1, (10)

where wt = τ(zt) + ut. Furthermore, it is assumed that

the expectation of E(wt) = 0. The coefficient (β + φγ)

reflects the persistence of volatility, whereas γ summa-

rizes the impact of the past realized measure on future

volatility.

The general conditions required to ensure that the

volatility process ht is stationary and the unconditional

variance of rt is finite and positive are given by:

ω + ξγ > 0, (11)

0 < β + φγ < 1. (12)
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If the conditions in Eq.(11) are fulfilled, the uncon-

ditional var iance of rt, taking expectations of both

sides in Eq.(10), can be easily shown to be equal to

(ω+ξγ)/[1−(β+φγ)]. Finally, as for standard GARCH

models, the positivity of ht (∀t) is achieved under the

general condition that ω, γ and β are all positive.

3.5 GJR-MEM

Multiplicative Error Models (MEM) were first proposed

by [16] as a generalization to non-negative variables of

the Autoregressive Conditional Duration (ACD) mod-

els of [17]. Namely, let vt be a discrete time process on

[0,∞) (e.g., a realized measure). A general formulation

of the MEM is

vt = µtϵt, (13)

µt = µ(ψµ, It−1), (14)

where (ϵt|It−1)
iid∼ D+(1, σ2). It can be easily seen that

E[vt|It−1] = µt, (15)

var[vt|It−1] = σ2µ2
t , (16)

where the conditional expectation of the realized mea-

sure (µt) provides an estimate of the latent conditional

variance ht.

The GJR-MEM model is obtained by borrowing

from the GARCH literature [16,24] the following dy-

namic equation for µt:

µt = ω + αvt−1 + βµt−1 + γvt−1I(rt−1 < 0), (17)

which allows the reproduction of volatility clustering as

well as leverage effects.

Coming to the specification of the distribution of ϵt,

any unit mean distribution with positive support could

be used. Possible choices include Gamma, Log-Normal,

Weibull, Inverted-Gamma and mixtures of them. In this

paper we consider the Gamma distribution which is a

flexible choice able to fit a variety of empirical settings.

If (ϵt|It−1) ∼ Γ (θ, ϕ), its density is given by

f(ϵt|It−1) =
1

Γ (θ)ϕθ
ϵθ−1
t exp

(
−ϵt
ϕ

)
. (18)

However, since E(ϵt|It−1) = θϕ, to ensure unit mean,

it is needed to impose the constraint ϕ = 1/θ giving rise

to the following density

f(ϵt|It−1) =
1

Γ (θ)
θθϵθ−1

t exp (−θϵt). (19)

Model parameters can then be estimated maximiz-

ing the likelihood function implied by the unit mean

Gamma assumption. It is worth noting that these esti-

mates have a quasi maximum likelihood interpretation

since it can be shown that, given that µt is correctly

specified, they are still consistent and asymptotic nor-

mal even if the distribution of ϵt is misspecified.

3.6 Evaluation Metrics

We have considered both online and offline evaluations.

In the online evaluation case, two alternative loss func-

tions have been used to train the LSTM models: the

widely accepted Mean Squared Error (MSE) for regres-

sion and forecasting tasks; and the QLIKE function,

particularly suitable for volatility forecasting [49]. For

the offline evaluation case, we have considered a test

data set (not used for training) for out-of-sample eval-

uation using MSE, QLIKE and the Pearson correlation

index.

Given a vector Ŷ of N forecasts and the vector Y

of observed values, the MSE and QLIKE are defined a

follows:

MSE =
1

N

N∑
i=1

(Ŷi − Yi)
2, (20)

QLIKE =
1

N

N∑
i=1

(log(Ŷi) +
Yi

Ŷi

). (21)

These measures are proposed in our evaluation frame-

work since they are considered to be robust for assessing

volatility forecast performance [49]. A robust measure

must ensure that using a proxy for the volatility (the

realized kernel in our case) gives the same ranking as

using the true (unobservable) volatility of an asset.

Moreover, the Pearson correlation coefficient is com-

puted between the forecast and realized volatility of

each estimated model, to assess the models ability to

follow the assets trends.

Also, statistical test, namely Diebold-Mariano (DM),

is used to assess models’ Conditional Predictive Abil-

ity (CPA). The one tail DM [13] is used with squared

error, predictive horizon equal to 1 (for one step ahead

forecast) and a significance threshold at 0.05, to test

the following NULL hypothesis ‘Model Mi has better

predictive ability than model Mj with a size level equal

to α = 0.05’.

Lastly, the results are evaluated in terms of Value

At Risk (VaR) and Expected Shortfall (ES) estimation

which are widely adopted by practitioners and regula-

tors as standard measures of market risk for financial

assets. The VaR encapsulates in a point-wise fashion

the potential market value loss of a financial asset over a
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Fig. 3: BAC one step ahead predictions. The observed

time series are given in gray and the predicted volatility

values in black. Data point 0 is the 18th March 2003;

data point 600 is the 10th August 2005; and data point

1200 corresponds to the 8th August 2008.

time horizon h, at a significance or coverage level αV aR.

In our case we consider h = 1 and αV aR = 0.05. Its per-

formance is evaluated using two metrics: the violation

ratio (VR) and the average square magnitude function

(ASFM). The VR is the percentage occurrence of an ac-

tual loss that is greater than the estimated maximum

loss in the VaR framework while the ASFM considers

the amount of possible default measuring the average

squared cost of exceptions. The ES [1] is often referred

to as the conditional VaR (cVaR). The predictive per-

formance of the models under comparison in forecasting

the pair (VaR, ES) is assessed by computing the Asym-

metric Laplace Score (ALS), as defined in [57]: more

accurate models are expected to return lower values of

the ALS criterion. The VR and ASFM metrics are de-

fined as in [14] and [44].

4 Results and Discussion

In this section, the proposed approach is implemented

in two variants: univariate (LSTM-1) and multivari-

ate (LSTM-29 and LSTM-92). The method is com-

pared with two state-of-the art methodologies, namely

R-GARCH [31] and GJR-MEM [24]. We discuss empir-

ical results from an out-of-sample forecasting compari-

son, using returns and realized measures for the 28 Dow

Jones Industrial Average stocks plus one exchange-traded

index fund, SPY (which tracks the S&P 500 index) over

a period of 1250 days and for the 92 stocks belonging

to the NASDAQ 100 index over a period of 956 days.

4.1 Dow Jones Industrial Average 500

A detailed comparison of the methods performance is

given in Table 5 with respect to each asset. The LSTM-

29 approach reaches the lowest MSE error for 18 out of

the 29 assets when compared with LSTM-1, R-GARCH

and GJR-MEM methods. In particular, the LSTM-29

has a lower error compared to our univariate model for

25 out of 29 assets, equal in 2 and worse in 2 cases.

Compared to R-GARCH, the LSTM-29 is better again

in 25 out of 29 cases, equal for 1, and worse for 3 as-

sets. Lastly, our proposed approach is better, equal and

worse than GJR-MEM in 16, 3 and 10 cases respec-

tively. An example of the one step ahead prediction

given by the LSTM-29 for the BAC asset is presented

in Figure 3.

Having a closer look at the MSE values from Table 5,

the LSTM-29 is not better than the other benchmarks

on assets with very low errors and hence volatility, in

the considered period (e.g., JNJ, KO, PG, and SPY).

Next, the forecast models are employed in risk man-

agement applications using Value At Risk (VaR). With

the VaR estimates, the models are evaluated using the

VR, CVR and the ASMF. Table 6 shows the values of

VR, CVR and ASMF for VaR estimation using the four

models for all DJI 500 assets. The LSTM-29 achieved

better VR (values closer to our selected VaR confidence

level - 5%) compared to LSTM-1 in 15 out of 29 as-

sets, equal for 3 and worse for 11; compared to the

R-GARCH is better in 6 cases, equal in 2 and worse in

21; while compared to the GJR-MEM is better, equal

and worse in 23, 1 and 5 cases respectively.

For the CVR , the LSTM-29 achieved better results

(the lower the value, the better) compared to LSTM-1

in 11 out of 29 assets, equal for 3 and worse for 15;

compared to the R-GARCH is better in 21 cases, equal

in 2 and worse in 6; while compared to the GJR-MEM is

better, equal and worse in 5, 1 and 23 cases respectively.

When considering the ASMF measure, the LSTM-

29 is better than the LSTM-1, R-GARCH and GJR-
MEM in 21, 17 and 17 cases; and worse in 8, 12 and 12

cases respectively.

Figure 4 is a scatter plot illustration comparing for

each asset, the performance of the LSTM-29 and the

other models measured in terms of MSE difference (i.e.,

positive values representing smaller errors and better

LSTM-29 performance) versus asset volatility in terms

of its variance (i.e., higher values of variance represent-

ing stronger fluctuation in daily volatilities) over the

out of sample period (1250 days).

As can be seen from Figure 4, the LSTM-29 is gener-

ally comparable with the other models at lower volatil-

ity, while outperforming the LSTM-1 and the two state-

of-the-art R-GARCH and GJR-MEM approaches in higher

volatility regimes. This result is confirmed by the Pear-

son’s correlation index with values 0.825 against LSTM-

1, 0.800 against R-GARCH, and 0.608 against GJR-

MEM over the 29 assets.

To verify whether the proposed approach has sta-

tistically superior predictive ability, a Diebold-Mariano
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Table 5: Evaluation Metrics for the DJI 500 dataset: The MSE, QLIKE and Pearson measures are reported for

each asset and for each compared model.

Asset
LSTM-1 LSTM-29 R-GARCH GJR-MEM

MSE QLIKE Pearson MSE QLIKE Pearson MSE QLIKE Pearson MSE QLIKE Pearson

AA 4.77 1.9871 0.59 3.65 1.9753 0.69 4.83 2.0125 0.60 4.05 1.9702 0.65
AIG 6.71 1.4047 0.61 4.84 1.3502 0.72 6.40 1.4303 0.61 5.40 1.3534 0.70
AXP 3.19 1.1222 0.77 1.70 1.1057 0.87 2.11 1.1139 0.84 2.00 1.1060 0.85
BA 0.88 1.4089 0.56 0.81 1.4014 0.62 0.85 1.4102 0.59 0.80 1.4023 0.62
BAC 3.93 0.9167 0.73 2.86 0.8878 0.81 5.19 0.9652 0.71 3.35 0.8991 0.77
C 5.86 1.2183 0.74 2.48 1.1888 0.89 3.62 1.2208 0.83 2.92 1.1912 0.86
CAT 1.12 1.5686 0.65 1.03 1.5559 0.69 1.18 1.5688 0.62 1.10 1.5595 0.66
CVX 1.36 1.3297 0.69 1.05 1.3262 0.76 1.20 1.3210 0.72 1.07 1.3135 0.75
DD 1.56 1.3125 0.64 1.10 1.2951 0.76 1.33 1.3225 0.72 1.11 1.2906 0.75
DIS 1.01 1.3500 0.52 0.86 1.3308 0.63 0.88 1.3351 0.61 0.83 1.3230 0.63
GE 0.57 0.9274 0.66 0.50 0.9214 0.72 0.54 0.9328 0.69 0.50 0.9109 0.71
GM 11.44 2.1415 0.62 9.83 2.1035 0.68 11.45 2.1048 0.62 10.79 2.0971 0.64
HD 2.58 1.5623 0.68 1.83 1.5563 0.78 1.99 1.5530 0.76 1.81 1.5417 0.77
IBM 0.65 1.0042 0.64 0.51 0.9995 0.73 0.65 1.0165 0.64 0.54 0.9900 0.70
INTC 1.42 1.7701 0.62 1.52 1.7711 0.62 1.51 1.7707 0.59 1.40 1.7621 0.62
JNJ 0.33 0.6027 0.52 0.32 0.6031 0.54 0.35 0.6566 0.48 0.34 0.6032 0.51
JPM 4.92 1.3190 0.76 3.86 1.3097 0.80 4.27 1.3223 0.78 3.24 1.2999 0.84
KO 0.28 0.7644 0.59 0.27 0.7645 0.61 0.34 0.8399 0.56 0.27 0.7557 0.60
MCD 1.32 1.3551 0.49 1.40 1.3736 0.48 1.32 1.3630 0.49 1.41 1.3579 0.47
MMM 0.64 1.0530 0.56 0.55 1.0512 0.65 0.68 1.0991 0.55 0.54 1.0444 0.64
MRK 9.45 1.5524 0.25 8.63 1.5483 0.38 9.75 1.5783 0.26 10.30 1.5341 0.28
MSFT 0.77 1.2006 0.60 0.63 1.2030 0.69 0.63 1.2070 0.68 0.57 1.1838 0.70
PG 0.25 0.7635 0.56 0.25 0.7696 0.58 0.31 0.8072 0.52 0.25 0.7584 0.57
SPY 0.17 0.1620 0.72 0.17 0.1519 0.75 0.16 0.1369 0.75 0.14 0.1267 0.78
T 1.97 1.4403 0.63 1.64 1.4304 0.70 2.12 1.4644 0.63 1.72 1.4266 0.69
UTX 0.85 1.1702 0.50 0.69 1.1634 0.62 0.97 1.1875 0.47 0.74 1.1585 0.59
VZ 1.40 1.2661 0.54 1.05 1.2643 0.70 1.15 1.2907 0.67 1.02 1.2530 0.70
WMT 0.71 1.1262 0.64 0.67 1.1253 0.68 0.88 1.1604 0.60 0.70 1.1163 0.65
XOM 0.95 1.2453 0.71 0.89 1.2484 0.73 0.92 1.2385 0.71 0.87 1.2324 0.73

test is performed using a predictive horizon equal to 1

(one-step-ahead forecast). As it can be observed from

the results reported in Table 7, the LSTM-29 has a bet-

ter predictive ability for 10 out of 29 assets compared

to the LSTM-1, 16 over 29 against the R-GARCH, and

6 out of 29 assets for the GJR-MEM, when consider-

ing a p-value strictly lower than 0.05. It is also worth

noticing that in the remaining cases LSTM-29 is never

worse than the compared models.

Furthermore, to test the dependence of forecasting

accuracy on volatility conditions, we evaluated the er-

rors (mean, median, standard deviation (std) and me-

dian absolute deviation (MAD)) for four volatility clus-

ters: very low (VL); low (L); high (H); and very high

(VH) (Table 8). The clusters are calculated taking the

50, 75 and 95 percentiles of the smoothed volatility over

time, using a 10-day centered moving average and mov-

ing variance of all the assets. Specifically, for the mov-

ing average, we consider the following ranges: 0 to 0.50

(up to 50%) for VL; 0.50 to 0.85 (up to 75%) for L;

0.85 to 2.80 (up to 95%) for H; and 2.80 to 13.92 (up

to 100%) for VH. For the moving variance the ranges

are: 0 to 1.18 (up to 25%) for VL; 1.18 to 1.79 (up to

75%) for L; 1.79 to 4.38 (up to 95%) for H; and 4.38

to 15.60 (up to 100%) for VH. As can be seen from the

DM test results in Table 9, the LSTM-1 performs bet-

ter than the multivariate counterpart for relatively low
volatility periods, while having inferior performance for

higher volatility ones. The LSTM-29 is never worse than

the R-GARCH, slightly worse than the GJR-MEM for

low volatilities and always statistically better in high

volatility settings.

However, it is worth noticing that the difference be-

tween LSTM-1 and LSTM-29 seen from Table 8 is in

practice negligible, valuing 0.010 (VL) and 0.024 (L)

for the mean, 0.014 (VL) and 0.030 (L) for the median.

The real impact is made by the LSTM-29 within the

VH volatility regime, where the difference to LSTM-

1, R-GARCH, GJR-MEM is respectively 10.61, 7.17,

and 2.40 for the mean and 0.59, 1.35, and 0.92 for the

median. Considering that the risk in trading assets is

considerable at higher volatility, the VH cluster is also

the most important to pay attention to.

In all regimes, we observed the tendency of LSTM-

29 to provide larger values of volatility when compared
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Table 6: Value At Risk analysis for the DJI 500 dataset: The VR, ALS and ASMF measures are reported for each

asset and for each compared model. For the VR the closest value to 5% the better, while for the ALS and ASMF

the lower the better.

Asset
Violation Rate (%) Average Square Magnitude Function Average Asymmetric Laplace Score

LSTM-1 LSTM-29 R-GARCH GJR-MEM LSTM-1 LSTM-29 R-GARCH GJR-MEM LSTM-1 LSTM-29 R-GARCH GJR-MEM

AA 4.88 4.96 6.00 4.64 1.59 1.16 1.46 1.08 0.85 0.95 0.11 0.56
AIG 4.32 4.56 5.20 3.60 3.62 3.16 3.25 3.98 0.26 0.47 0.74 0.02
AXP 6.08 6.33 5.04 5.44 0.49 0.54 0.49 0.54 0.09 0.04 0.94 0.48
BA 5.20 5.28 4.96 4.72 0.75 0.73 0.82 0.76 0.74 0.65 0.95 0.65
BAC 4.80 4.16 5.76 3.76 0.45 0.39 0.51 0.41 0.75 0.16 0.23 0.04
C 4.72 4.48 5.76 4.16 1.19 0.75 0.88 0.84 0.65 0.39 0.23 0.16
CAT 4.80 4.64 4.48 4.40 0.97 0.93 1.00 1.01 0.75 0.56 0.39 0.32
CVX 4.56 4.64 4.32 4.32 0.58 0.51 0.56 0.50 0.47 0.56 0.26 0.26
DD 3.60 3.68 4.80 3.28 0.58 0.45 0.53 0.52 0.02 0.03 0.75 0.00
DIS 4.24 4.64 4.72 3.92 0.60 0.48 0.57 0.56 0.21 0.56 0.65 0.07
GE 3.68 3.36 3.60 3.04 0.31 0.29 0.37 0.32 0.03 0.00 0.02 0.00
GM 8.09 8.09 5.36 6.16 2.53 2.16 2.82 2.61 0.00 0.00 0.56 0.07
HD 4.64 4.08 4.56 3.12 0.69 0.79 0.70 0.85 0.56 0.13 0.47 0.00
IBM 4.00 3.76 4.24 3.76 0.61 0.65 0.66 0.46 0.09 0.04 0.21 0.04
INTC 6.16 5.52 5.28 5.04 0.84 0.90 0.77 0.84 0.07 0.40 0.65 0.94
JNJ 2.64 3.28 3.76 2.48 0.49 0.38 0.44 0.50 0.00 0.00 0.04 0.00
JPM 4.72 4.72 4.72 3.92 0.63 0.61 0.61 0.59 0.65 0.65 0.65 0.07
KO 2.72 2.88 4.24 2.24 0.63 0.50 0.52 0.64 0.00 0.00 0.21 0.00
MCD 4.00 4.00 4.08 3.44 0.52 0.55 0.61 0.51 0.09 0.09 0.13 0.01
MMM 4.16 3.76 4.88 4.00 1.47 1.50 1.36 1.38 0.16 0.04 0.85 0.09
MRK 3.84 4.48 4.80 2.80 4.21 3.59 3.26 5.10 0.05 0.39 0.75 0.00
MSFT 3.76 4.00 3.92 3.20 0.66 0.54 0.53 0.54 0.04 0.09 0.07 0.00
PG 2.40 2.48 3.60 2.32 0.31 0.29 0.28 0.28 0.00 0.00 0.02 0.00
SPY 6.89 6.73 6.00 6.97 0.30 0.25 0.23 0.24 0.00 0.01 0.11 0.00
T 4.40 3.92 4.64 3.04 0.93 1.05 1.01 1.23 0.32 0.07 0.56 0.00
UTX 4.00 4.24 4.24 3.60 0.67 0.59 0.82 0.68 0.09 0.21 0.21 0.02
VZ 3.44 4.00 4.96 3.12 1.32 1.18 1.14 1.43 0.01 0.09 0.95 0.00
WMT 3.68 3.20 4.40 3.12 0.27 0.32 0.30 0.28 0.03 0.00 0.32 0.00
XOM 4.40 4.72 4.24 4.64 0.81 0.79 0.77 0.70 0.32 0.65 0.21 0.56
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Fig. 4: Difference in MSE (y-axis) and variance of volatility (x-axis) for LSTM-29 vs: (a) LSTM-1; (b) R-GARCH;

and (c) GJR-MEM. Each dot represents an asset. The LSTM-29 gets better in periods of high volatility.

to R-GARCH and GJR-MEM estimates, and to be more

conservative from a risk management perspective.

Figure 5 outlines the cumulative MSE recorded by

the considered models in the four different volatility

regimes. These curves are plotted by sorting the er-

rors in decreasing order so that larger errors come first,

which is the reason of the up-sloped shapes of the curves:

they outline the tendency of models to accumulate larger

errors along the experimentation. One can observe that

the LSTM-29 performance is always better than the

other models in regimes of H and VH volatility. In VL

and L volatility regimes, the LSTM-29 is a little worse

than GJR-MEM, but still better than R-GARCH in

all considered regimes. This is not surprising as the

R-GARCH and GJR-MEM are econometric models of

volatility, while the LSTM is unaware of the underly-

ing stochastic process. Instead, the LSTM-1 achieved a

better accuracy for VL and L regimes, but performed

poorly for the VH volatility regime. For completeness,
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Table 7: Diebold-Mariano statistic for the DJI 500 dataset (with a p-value given in brackets) for the LSTM-29

against LSTM-1, R-GARCH and GJR-MEM. The p-values are marked with a * for 10% confidence level, with **

for 5% and with *** for 1%.

Asset
LSTM-29 vs.

LSTM-1 R-GARCH GJR-MEM

AA -2.42 (0.008***) -3.21 (0.001***) -2.53 (0.006***)
AIG -2.86 (0.002***) -2.35 (0.009***) -1.21 (0.114)
AXP -2.68 (0.004***) -2.76 (0.003***) -2.06 (0.020**)
BA -1.33 (0.092*) -1.92 (0.028**) 0.25 (0.597)
BAC -2.27 (0.012**) -3.11 (0.001***) -1.65 (0.049**)
C -3.12 (0.001***) -3.33 (0.000***) -2.17 (0.015**)
CAT -1.01 (0.157) -2.45 (0.007***) -1.28 (0.100*)
CVX -1.60 (0.055*) -1.54 (0.061*) -0.20 (0.420)
DD -1.77 (0.039**) -2.51 (0.006***) -0.18 (0.429)
DIS -1.55 (0.060*) -0.62 (0.267) 0.64 (0.739)
GE -0.85 (0.198) -0.85 (0.197) -0.10 (0.460)
GM -2.12 (0.017**) -2.91 (0.002***) -2.05 (0.020**)
HD -1.67 (0.048**) -1.03 (0.153) 0.14 (0.556)
IBM -1.81 (0.035**) -2.31 (0.011**) -0.89 (0.187)
INTC 0.64 (0.740) 0.05 (0.520) 1.27 (0.898)
JNJ -0.10 (0.458) -1.27 (0.100*) -1.69 (0.046**)
JPM -1.29 (0.099*) -1.37 (0.085*) 1.28 (0.900)
KO -0.28 (0.389) -2.9 (0.002***) -0.44 (0.331)
MCD 1.27 (0.898) 1.52 (0.935) -0.14 (0.443)
MMM -1.46 (0.072*) -2.36 (0.009***) 0.33 (0.628)
MRK -0.97 (0.165) -1.47 (0.071**) -1.58 (0.057*)
MSFT -0.93 (0.176) 0.02 (0.509) 1.38 (0.916)
PG -0.36 (0.360) -3.00 (0.001***) 0.00 (0.501)
SPY -0.09 (0.463) 0.33 (0.629) 1.92 (0.972)
T -1.76 (0.040**) -2.72 (0.003***) -1.20 (0.116)
UTX -0.87 (0.192) -1.72 (0.043**) -0.94 (0.173)
VZ -1.45 (0.074*) -1.02 (0.153) 0.58 (0.718)
WMT -0.74 (0.230) -2.26 (0.012**) -0.61 (0.272)
XOM -0.54 (0.293) -0.40 (0.343) 0.43 (0.665)

Table 8: Average with Std (in brackets) errors, Median with MAD (in brackets) errors for the four models at

different volatility regimes (VL, L, H and VH) on the DJI 500 dataset. The four volatility regimes are determined

using the 50, 75, and 95 percentiles over all the assets. The first comparison (rows 2 to 5) is using a centered

moving average of the volatilities over time (5 time steps before and 5 time steps after the current one), while the

second one (rows 6 to 9) is using a centered moving variance of the volatilities over time (5 time steps before and

5 time steps after the current one).

LSTM-1 LSTM-29 R-GARCH GJR-MEM

Mean (Std) Median (MAD) Mean (Std) Median (MAD) Mean (Std) Median (MAD) Mean (Std) Median (MAD)

Moving
Average

Very Low 0.151 (0.657) 0.037 (0.051) 0.161 (0.677) 0.038 (0.053) 0.165 (0.709) 0.036 (0.050) 0.157 (0.636) 0.045 (0.062)
Low 0.596 (3.290) 0.136 (0.186) 0.620 (3.234) 0.139 (0.191) 0.642 (3.367) 0.135 (0.188) 0.610 (3.232) 0.151 (0.205)
High 2.867 (35.254) 0.385 (0.535) 2.796 (35.338) 0.385 (0.539) 3.034 (35.414) 0.414 (0.580) 2.941 (35.751) 0.418 (0.579)
Very High 33.056 (144.510) 3.638 (5.130) 22.447 (104.469) 3.043 (4.333) 29.615 (125.571) 4.394 (6.264) 24.845 (105.169) 3.966 (5.640)

Moving
Variance

Very Low 0.124 (0.259) 0.038 (0.053) 0.138 (0.292) 0.039 (0.055) 0.138 (0.305) 0.038 (0.053) 0.131 (0.260) 0.045 (0.063)
Low 0.472 (0.971) 0.142 (0.196) 0.502 (1.021) 0.143 (0.200) 0.520 (1.091) 0.140 (0.195) 0.486 (0.951) 0.162 (0.222)
High 2.253 (7.640) 0.344 (0.486) 2.126 (6.702) 0.335 (0.476) 2.423 (7.642) 0.366 (0.523) 2.160 (6.768) 0.384 (0.538)
Very High 36.406 (159.551) 2.685 (3.848) 25.946 (125.006) 2.331 (3.362) 32.934 (142.879) 3.615 (5.222) 28.853 (125.875) 3.382 (4.868)

the LSTM-29 was also trained without the index fund

SPY, showing consistent results.

To investigate whether the proposed model is able to

accurately predict volatility level throughout extreme

market events, we also considered its predictive perfor-

mance during the 2007-2008 crisis (in particular, focus-

ing on the time span of 200 trading days starting from

the 1st July 2007).

Table 10 shows the MSE scored by each model in the

initial 1050 days (pre-crisis) and the last 200 days (in-

crisis). As already shown in Figure 5, the LSTM-1 and

GJR-MEM are slightly better in the forecast within low

volatility regimes (pre-crisis), closely followed by the
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Table 9: Diebold-Mariano statistic for the DJI 500 dataset (with a p-value given in brackets) for the LSTM-29

against LSTM-1, R-GARCH and GJR-MEM for the four volatility regimes.

LSTM-29 vs.

LSTM-1 R-GARCH GJR-MEM

Moving
Average

Very Low 6.65 (1.000) -2.12 (0.017) 2.21 (0.987)
Low 2.56 (0.995) -2.30 (0.011) 1.07 (0.859)
High -1.79 (0.037) -5.23 (< 0.001) -1.91 (0.028)
Very High -7.11 (< 0.001) -6.87 (< 0.001) -2.58 (0.005)

Moving
Variance

Very Low 10.64 (1.000) 0.06 (0.524) 4.83 (1.000)
Low 5.06 (1.000) -2.51 (0.006) 2.55 (0.995)
High -2.88 (0.002) -7.75 (< 0.001) -1.13 (0.13)
Very High -7.02 (< 0.001) -6.66 (< 0.001) -3.00 (0.001)
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Fig. 5: Cumulative MSE for the four models at different volatility regimes (VL, L, H, and VH). The four volatility

levels are calculated using the 50, 75 and 95 percentiles over the 29 assets. The different scale on the y-axis is due

to the magnitude of the error in the four volatility regimes.

LSTM-29. On the other hand, during the crisis period,

the LSTM-29 performed better than LSTM-1 and R-

GARCH in 28 out of 29 cases, and in 20 out of 29

cases when compared to GJR-MEM. Furthermore, R-

GARCH was never able to achieve the best forecasting

performance for any of the assets during both the pre-

crisis and in-crisis periods.

In order to evaluate how much model A is better

then model B, we compute their MSE ratio as:

ratioMSE(A,B) =
MSEA

MSEB
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Table 10: MSE before and during the crisis periods on the DJI 500 dataset for the four considered models (the

best performing model is given in bold).

Asset
Before Crisis During Crisis

LSTM-1 LSTM-29 R-GARCH GJR-MEM LSTM-1 LSTM-29 R-GARCH GJR-MEM

AA 2.66 2.38 2.79 2.44 15.90 10.35 15.56 12.61
AIG 3.24 2.85 3.48 2.62 25.07 15.38 21.88 20.13
AXP 0.71 0.65 0.68 0.73 16.35 7.30 9.61 8.72
BA 0.58 0.57 0.62 0.59 2.48 2.04 2.06 1.91
BAC 0.37 0.34 0.39 0.37 22.78 16.24 30.63 19.10
C 0.51 0.39 0.43 0.37 34.19 13.49 20.52 16.44
CAT 0.85 0.82 0.88 0.84 2.45 2.07 2.72 2.44
CVX 0.91 0.78 0.78 0.73 3.69 2.51 3.44 2.84
DD 0.55 0.48 0.53 0.48 6.92 4.36 5.58 4.43
DIS 0.65 0.63 0.67 0.64 2.97 2.09 2.02 1.81
GE 0.21 0.25 0.23 0.21 2.48 1.82 2.23 2.06
GM 7.15 6.39 7.36 7.05 34.18 28.10 33.16 30.61
HD 0.70 0.75 0.69 0.68 12.39 7.46 8.80 7.76
IBM 0.25 0.25 0.26 0.22 2.78 1.86 2.73 2.22
INTC 0.85 0.97 0.93 0.88 4.46 4.41 4.63 4.15
JNJ 0.30 0.31 0.32 0.33 0.48 0.39 0.51 0.44
JPM 0.62 0.59 0.64 0.60 25.71 18.88 21.29 15.11
KO 0.18 0.19 0.22 0.18 0.76 0.70 0.94 0.78
MCD 1.20 1.26 1.20 1.32 1.96 2.17 1.97 1.94
MMM 0.46 0.41 0.46 0.40 1.61 1.29 1.86 1.27
MRK 6.37 6.43 6.50 7.18 25.81 20.38 27.01 26.92
MSFT 0.33 0.36 0.34 0.31 3.13 2.06 2.16 1.97
PG 0.20 0.20 0.22 0.20 0.56 0.53 0.78 0.52
SPY 0.06 0.07 0.06 0.05 0.71 0.64 0.68 0.55
T 1.27 1.22 1.72 1.32 5.70 3.87 4.22 3.86
UTX 0.35 0.36 0.39 0.34 3.51 2.44 4.05 2.86
VZ 0.59 0.64 0.66 0.60 5.71 3.24 3.71 3.24
WMT 0.36 0.37 0.40 0.36 2.57 2.27 3.44 2.46
XOM 0.67 0.63 0.59 0.57 2.42 2.30 2.72 2.43

which gives a value greater than 1, if model B has better

accuracy than model A, and smaller than 1 otherwise.

This metric has been applied in order to compare the

four models performance during the pre-crisis and in-

crisis periods.

As can be seen from Figure 6a, the LSTM-29 is per-

forming better than LSTM-1 for 28 out of 29 assets

(i.e., all except for the MCD - the only point below the

reference line) during the in-crisis period, with up to

1.8 MSE ratio.

When compared to the R-GARCHmodel (Figure 6b),

the LSTM-29 is showing similar performance. Again,

the MCD is better predicted by the R-GARCH in both

periods and three other assets are with worsened MSE

ratio but are still better predicted by the LSTM-29. The

remaining 25 assets showed an improved performance

of LSTM-29 during the in-crisis period.

Lastly, the comparison with GJR-MEM (Figure 6c),

shows the LSTM-29 with increased accuracy on 15 as-

sets during the 200 high risk days. Five assets are with

slightly worsened prediction during the in-crisis period,

five assets have close prediction accuracy (at near 1 ra-

tio) and three assets (i.e., INTC, MSFT, and SPY) are

better predicted by the GJR-MEM for both before and

during the crisis.

Overall, the above discussed empirical results sug-

gest that the use of the LSTM approach for volatility

forecasting can be particularly profitable in turbulent

periods where the economic pay-off derived from gener-

ation of more accurate volatility forecasts is potentially

more substantial than those in more tranquil periods.

4.2 NASDAQ 100

Results for the NASDAQ 100 dataset are reported in

Table 11, Table 12, and Figure 7. The latter shows

the models’ cumulative MSE profile in the four volatil-

ity regimes for the NASDAQ 100 dataset. As already

observed with the DJI 500 (Figure 5), the proposed
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Fig. 6: MSE rations of the LSTM-29 compared to: (a) the LSTM-1; (b) the R-GARCH; and (c) the GJR-MEM

models. The x-axes represent the pre-crisis period (up to 1st July 2007) and the y-axes - the in-crisis one (after

1st July 2007). Each dot is an asset and the bisect line is shown as reference.

method generally achieves better accuracy when com-

pared to the R-GARCH and GJR-MEM. In this ex-

periment, the univariate LSTM-1 not only outperforms

the state-of-the-art methods, but also the multivariate

counterpart (LSTM-92) in all volatility regimes.

Table 11 reports the errors (mean, median, standard

deviation (std) and median absolute deviation (MAD))

for the four volatility regimes. As it can be seen from

Figure 7, the LSTM-1 has smaller errors when com-

pared to all other methods, for both moving average

and moving variance volatilities over time. The mean/std

are particularly high due to the difference in magni-

tudes across the 92 assets, which is also evident when

using the more robust median/MAD metrics.

Furthermore, the DM test (Table 12) is used to sta-

tistically assess the difference in errors between the best

model (LSTM-1) and the others (LSTM-92, R-GARCH

and GJR-MEM). The DM test shows the LSTM-1 to be

statistically better than the R-GARCH in all volatility

regimes (p-value < 0.05), better than LSTM-92 in three

volatility regimes (i.e., VL, H and VH) for moving vari-

ance, and in another three regimes (i.e., L, H and VH)

for the moving variance. In the case of GJR-MEM, the

LSTM-1 results are statistically better in two volatility

settings (i.e., VL and H).

As it can be seen, the LSTM-1 outperforms the mul-

tivariate model for the NASDAQ data. This limitation

could be due to the fact that while we are increasing

the number of assets, the number of samples in the time

series is shorter (i.e., curse of dimensionality). To allow

the multivariate model to better learn the assets’ inter-

actions, there is the need for more data points.

5 Comparison with Recurrent Neural Networks

(RNN)

Eventually, we compare the proposed deep model with

the classic Elman Network (also known as Simple Re-

current Network) [15] on both DJI 500 and NASDAQ

100. The Elman RNN topology only stores the previ-

ous values of the hidden units, thus being only able

to exploit information from the most recent past. This

comparison is carried out to further justify the use of

the more complex LSTM model. Table 13 presents the

mean/std and median/MAD of the two methods (both

univariate and multivariate) for the two datasets. As

can be seen, the LSTMs performances are generally

better than the RNN counterparts, achieving lower es-

timate errors for all analyzed volatility regimes and

across all metrics (with only few exceptions for RNN-

29 with moving variance). Furthermore, Figure 8 illus-

trates the cumulative errors for the DJI 500 (Figure 8a)

and NASDAQ 100 (Figure 8b) datasets. As can be ob-

served, the error profiles of both univariate and multi-

variate LSTM are better (lower cumulative error) than

those achieved by the two compared RNN models. This

result further acknowledges the ability of more complex

time series models to exploit both short and long term

dependencies in the available data.

6 Conclusion

In this paper, we investigated the profitability of using

LSTM for forecasting daily stock market volatility in

order to support decision making in risk management

applications. We applied the model to a panel of 29
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Fig. 7: Cumulative MSE for the four models at different volatility regimes (VL, L, H, and VH). The four volatility

levels are calculated using the 50, 75 and 95 percentiles over the 92 assets. The different scale on the y-axis is due

to the magnitude of the error in the four volatility regimes.

assets representative of the Dow Jones Industrial Av-

erage index over the period 2002-2008, in addition to

the market factor proxied by the SPY, and to 92 assets

belonging to the NASDAQ 100 index within the period

December 2012 to November 2017.

Both periods entail different market regimes related

the outrise of two extremely critical events: the global

asset management crisis (2007-2008) and the European

debt crisis (2011-2012).

Our findings confirmed the superiority of the LSTM

over widely popular univariate parametric benchmarks,

such as the R-GARCH and GJR-MEM, when forecast-

ing in regimes of high volatility, while still producing

comparable predictions for the low/medium volatility

periods. These conclusions are result of performance

evaluation, using the MSE, QLIKE and the Pearson

correlation index in addition to the Diebold-Mariano

statistical test.

An attractive feature of the LSTM is that it eas-

ily allows taking into account volatility spillover phe-

nomena which are dynamic dependence relationships

among the volatilities of different stocks. Such depen-

dency is hard to identify with conventional parametric

approaches, due to the need of large number of param-

eters to be handled by the models. Furthermore, even

simple models such as standard vector auto-regressive

techniques are easily affected by the curse of dimension-

ality. On the other hand, the LSTM (belonging to an

emerging class of Deep Learning approaches) demon-

strates yet again its capability to cope with complex

and highly non-linear dependencies among the consid-

ered variables and in particular, shows superior perfor-

mance in predicting and forecasting especially in high

turbulence and entropy conditions for the considered

high volatility stock market periods.

Results of the experiments show the ability of Deep

Learning models to capture cross-volatility dependen-

cies using the whole market raw data, with no back-

ground knowledge of the distribution of values and the

dependency across assets over time. Therefore, appli-
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Table 11: Average with Std (in brackets) errors, Median with MAD (in brackets) errors for the four models at

different volatility regimes (VL, L, H and VH) on the NASDAQ 100 dataset. The four volatility regimes are

determined using the 50, 75, and 95 percentiles over all the assets. The first comparison (rows 2 to 5) is using a

centered moving average of the volatilities over time (5 time steps before and 5 time steps after the current one),

while the second one (rows 6 to 9) is using a centered moving variance of the volatilities over time (5 time steps

before and 5 time steps after the current one).

LSTM-1 LSTM-92 R-GARCH GJR-MEM

Mean (Std) Median (MAD) Mean (Std) Median (MAD) Mean (Std) Median (MAD) Mean (Std) Median (MAD)

Moving
Average

Very Low 0.557 (3.311) 0.082 (0.112) 0.590 (2.960) 0.084 (0.118) 1.051 (2.765) 0.566 (0.649) 0.629 (2.675) 0.183 (0.237)
Low 3.051 (20.954) 0.312 (0.432) 3.165 (15.148) 0.355 (0.495) 3.629 (13.814) 1.105 (1.361) 3.061 (14.050) 0.606 (0.802)
High 15.233 (94.568) 0.836 (1.181) 16.201 (96.318) 1.048 (1.481) 17.127 (92.106) 2.296 (3.089) 15.933 (94.485) 1.555 (2.111)
Very High 161.635 (1771.79) 3.022 (4.330) 167.151 (1771.46) 3.714 (5.322) 178.215 (1742.53) 7.645 (10.896) 186.709 (2023.93) 5.054 (7.166)

Moving
Variance

Very Low 0.497 (2.376) 0.090 (0.123) 0.502 (1.355) 0.093 (0.130) 1.007 (1.923) 0.569 (0.659) 0.546 (1.147) 0.193 (0.252)
Low 2.565 (9.518) 0.339 (0.474) 2.750 (7.390) 0.385 (0.544) 3.322 (6.759) 1.199 (1.474) 2.608 (6.313) 0.639 (0.860)
High 12.955 (52.915) 0.682 (0.976) 13.964 (51.865) 0.848 (1.220) 15.120 (48.385) 2.051 (2.803) 13.207 (47.936) 1.333 (1.848)
Very High 173.773 (1778.15) 1.178 (1.697) 179.051 (1778.06) 1.555 (2.249) 188.216 (1748.81) 3.272 (4.662) 200.715 (2029.43) 2.652 (3.761)

Table 12: Debold-Mariano statistic for the NASDAQ 100 dataset (with a p-value given in brackets) for the LSTM-1

against LSTM-92, R-GARCH and GJR-MEM for the four volatility regimes.

LSTM-1 vs.

LSTM-92 R-GARCH GJR-MEM

Moving
Average

Very Low -3.35 (0.001) -40.06 (< 0.001) -7.44 (< 0.001)
Low -1.13 (0.259) -5.54 (< 0.001) -0.1 (0.923)
High -7.91 (< 0.001) -12.49 (< 0.001) -3.41 (0.001)
Very High -4.42 (< 0.001) -5.27 (< 0.001) -1.59 (0.113)

Moving
Variance

Very Low -0.48 (0.632) -38.15 (< 0.001) -4.75 (< 0.001)
Low -3.6 (< 0.001) -13.24 (< 0.001) -0.87 (0.383)
High -5.85 (< 0.001) -10.53 (< 0.001) -1.42 (0.155)
Very High -4.29 (< 0.001) -4.62 (< 0.001) -1.7 (0.089)

Table 13: Average with Std (in brackets) errors, Median with MAD (in brackets) errors for the four models at

different volatility regimes (VL, L, H and VH) on the DJI 500 and NASDAQ 100 datasets. The four volatility

regimes are determined using the 50, 75, and 95 percentiles over all the assets. The first comparison (rows 2 to

5) is using a centered moving average of the volatilities over time (5 time steps before and 5 time steps after the

current one), while the second one (rows 6 to 9) is using a centered moving variance of the volatilities over time
(5 time steps before and 5 time steps after the current one).

DJI 500

LSTM-1 LSTM-29 RNN-1 RNN-29

Mean (Std) Median (MAD) Mean (Std) Median (MAD) Mean (Std) Median (MAD) Mean (Std) Median (MAD)

Moving
Average

Very Low 0.151 (0.657) 0.037 (0.051) 0.161 (0.677) 0.038 (0.053) 0.176 (0.687) 0.04 (0.056) 0.503 (7.577) 0.061 (0.086)
Low 0.596 (3.29) 0.136 (0.186) 0.62 (3.234) 0.139 (0.191) 0.679 (3.289) 0.155 (0.213) 3.074 (82.297) 0.222 (0.309)
High 2.867 (35.254) 0.385 (0.535) 2.796 (35.338) 0.385 (0.539) 3.714 (41.474) 0.446 (0.629) 8.303 (140.693) 0.707 (0.995)
Very High 33.056 (144.510) 3.638 (5.130) 22.447 (104.469) 3.043 (4.333) 38.993 (231.107) 4.405 (6.253) 61.709 (312.965) 6.707 (9.585)

Moving
Variance

Very Low 0.124 (0.259) 0.038 (0.053) 0.138 (0.292) 0.039 (0.055) 0.148 (0.307) 0.041 (0.058) 0.06 (0.634) 0.015 (0.373)
Low 0.472 (0.971) 0.142 (0.196) 0.502 (1.021) 0.143 (0.2) 0.572 (1.156) 0.165 (0.231) 0.084 (1.165) 0.02 (0.727)
High 2.253 (7.640) 0.344 (0.486) 2.126 (6.702) 0.335 (0.476) 2.796 (9.868) 0.409 (0.582) 0.234 (3.082) 0.028 (1.182)
Very High 36.406 (159.551) 2.685 (3.848) 25.946 (125.006) 2.332 (3.362) 43.480 (244.150) 3.4191 (4.942) 0.647 (8.114) 0.017 (3.328)

NASDAQ 100

LSTM-1 LSTM-92 RNN-1 RNN-92

Mean (Std) Median (MAD) Mean (Std) Median (MAD) Mean (Std) Median (MAD) Mean (Std) Median (MAD)

Moving
Average

Very Low 0.557 (3.311) 0.082 (0.112) 0.590 (2.960) 0.084 (0.118) 2.427 (54.195) 0.069 (0.097) 0.928 (4.180) 0.086 (0.125)
Low 3.051 (20.954) 0.312 (0.432) 3.165 (15.148) 0.355 (0.495) 16.100 (199.779) 0.315 (0.445) 4.349 (16.878) 0.413 (0.601)
High 15.233 (94.568) 0.836 (1.181) 16.201 (96.318) 1.048 (1.481) 108.482 (1315.065) 0.970 (1.395) 19.953 (98.638) 1.246 (1.822)
Very High 161.635 (1771.79) 3.022 (4.330) 167.151 (1771.46) 3.714 (5.322) 764.556 (6103.58) 4.134 (6.019) 177.407 (1761.22) 4.342 (6.374)

Moving
Variance

Very Low 0.497 (2.376) 0.090 (0.123) 0.502 (1.355) 0.093 (0.130) 1.584 (32.389) 0.077 (0.108) 0.879 (3.226) 0.098 (0.142)
Low 2.565 (9.518) 0.339 (0.474) 2.750 (7.390) 0.385 (0.544) 10.237 (121.438) 0.341 (0.488) 4.28 (12.877) 0.449 (0.656)
High 12.955 (52.915) 0.682 (0.976) 13.964 (51.865) 0.848 (1.220) 78.006 (695.522) 0.794 (1.155) 18.125 (60.955) 0.983 (1.444)
Very High 173.774 (1778.15) 1.178 (1.697) 179.051 (1778.06) 1.555 (2.249) 924.192 (6491.16) 1.612 (2.356) 185.557 (1767.47) 1.896 (2.787)

cation of LSTM in this framework is beneficial, and,

from the perspective of practitioners in Finance, it has

the relevant advantage of being almost completely data

driven and model-blind from a statistical point of view.
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Fig. 8: Cumulative MSE for the LSTM and RNN methods (both univariate and multivariate).

Overall, it should be remarked that the degree of com-

plexity of the relationships linking individual asset volatil-

ities within a market is such to prevent the specifica-

tion and estimation of feasible multivariate parametric

models. In this perspective, Deep Learning models of-

fer a highly valuable tool for making robust and accu-

rate inference on complex phenomena such as volatility

spillovers, contagion effects and volatility co-movements

and, in general, for accurate risk and volatility forecast-

ing.
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ward to recurrent lstm neural networks for language mod-
eling. IEEE Transactions on Audio, Speech, and Lan-
guage Processing 23(3), 517–529 (2015)

55. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence
learning with neural networks. In: Advances in neural
information processing systems, pp. 3104–3112 (2014)

56. Suwajanakorn, S., Seitz, S.M., Kemelmacher-Shlizerman,
I.: Synthesizing obama: learning lip sync from audio.
ACM Transactions on Graphics (TOG) 36(4), 95 (2017)

57. Taylor, J.W.: Forecasting value at risk and ex-
pected shortfall using a semiparametric approach based
on the asymmetric laplace distribution. Journal
of Business & Economic Statistics 37(1), 121–133
(2019). DOI 10.1080/07350015.2017.1281815. URL
https://doi.org/10.1080/07350015.2017.1281815

58. Tran, N.T., Luong, V.T., Nguyen, N.L.T., Nghiem, M.Q.:
Effective attention-based neural architectures for sen-
tence compression with bidirectional long short-term
memory. In: Proceedings of the Seventh Symposium on
Information and Communication Technology, pp. 123–
130. ACM (2016)

59. Troiano, L., Villa, E., Loia, V.: Replicating a trading
strategy by means of lstm for financial industry appli-
cations. IEEE Transactions on Industrial Informatics
14(7), 3226–3234 (2018). DOI 10.1109/TII.2018.2811377

60. Visser, M.P.: Garch parameter estimation using high-
frequency data. Journal of Financial Econometrics 9(1),
162–197 (2011)

61. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.:
Regularization of neural networks using dropconnect. In:
International Conference on Machine Learning, pp. 1058–
1066 (2013)

62. Wang, C.: Rra: Recurrent residual attention for sequence
learning. arXiv preprint arXiv:1709.03714 (2017)

63. Wang, C., Chen, Q., Gerlach, R.: Bayesian realized-garch
models for financial tail risk forecasting incorporating the
two-sided weibull distribution. Quantitative Finance pp.
1–26 (2018)

64. Wang, C., Niepert, M.: State-regularized recurrent neural
networks. arXiv preprint arXiv:1901.08817 (2019)

65. Wang, L., Zeng, Y., Chen, T.: Back propagation neural
network with adaptive differential evolution algorithm for
time series forecasting. Expert Systems with Applications
42(2), 855–863 (2015)

66. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.,
Salakhudinov, R., Zemel, R., Bengio, Y.: Show, attend
and tell: Neural image caption generation with visual at-
tention. In: International Conference on Machine Learn-
ing, pp. 2048–2057 (2015)

67. Yao, K., Peng, B., Zhang, Y., Yu, D., Zweig, G., Shi,
Y.: Spoken language understanding using long short-term
memory neural networks. In: Spoken Language Tech-
nology Workshop (SLT), 2014 IEEE, pp. 189–194. IEEE
(2014)

68. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent
neural networks: Lstm cells and network architectures.
Neural Computation 31(7), 1235–1270 (2019). DOI
10.1162/neco a 01199

69. Zaytar, M.A., El Amrani, C.: Sequence to sequence
weather forecasting with long short-term memory recur-
rent neural networks. International Journal of Computer
Applications 143(11) (2016)

70. Zhang, K., Teo, K.L.: A penalty-based method from re-
constructing smooth local volatility surface from ameri-
can options. J. Ind. Manag. Optim 11, 631–644 (2015)


