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Abstract—Luggage screening is a very important part of the 
airport security risk assessment and clearance process. 
Automating the threat objects detection from x-ray scans of 
passengers’ luggage can speed-up and increase the efficiency 
of the whole security procedure. In this paper we investigate 
and compare several algorithms for detection of firearm parts 
in x-ray images of travellers’ baggage. In particular, we focus 
on identifying steel barrel bores as threat objects, being the 
main part of the weapon needed for deflagration. For this 
purpose, we use a dataset of 22k double view x-ray scans, 
containing a mixture of benign and threat objects. In the pre-
processing stage we apply standard filtering techniques to 
remove noisy and ambiguous images (i.e., smoothing, black 
and white thresholding, edge detection, etc.) and subsequently 
employ deep learning techniques (Convolutional Neural 
Networks and Stacked Autoencoders) for the classification 
task. For comparison purposes we also train and simulate 
shallow Neural Networks and Random Forests algorithms for 
the objects detection. Furthermore, we validate our findings 
on a second dataset of double view x-ray scans of courier 
parcels. We report and critically discuss the results of the 
comparison on both datasets, showing the advantages of our 
approach. 
 
Index Terms—Baggage screening, Deep Learning, 
Convolutional Neural Networks, Image filtering, Object 
Detection Algorithms, X-ray Images 
 

I. INTRODUCTION 

Identifying and detecting dangerous objects and threats in 
baggage carried on board of aircrafts plays important role 
in ensuring and guaranteeing passengers’ security and 
safety. The security checks relay mostly on X-ray imaging 
and human inspection, which is a time consuming, tedious 
process performed by human experts assessing whether 
threats are hidden or occluded by other objects in a closely 
packed bags. Furthermore, a variety of challenges makes 
this process tedious, among those: very few bags actually 
contain threat items; the bags can include a wide range of 
items, shapes and substances (e.g., metals, organic, etc.); 
the decision needs to be made in few seconds (especially in 
rush hours); and the objects can be rotated, thus presenting 
a difficult to recognize view. Due to the complex nature of 
the task, the literature suggests that human expert detection 
performance is only about 80-90% accurate [1]. 
Automating the screening process through incorporating 
intelligent techniques for image processing and object 
detection can increase the efficiency, reduce the time, and 
improve the overall accuracy of dangerous objects 
recognition.  
Research on threat detection in luggage security can be 
grouped based on three imaging modalities: single-view x-
ray scans [2], multi-view x-ray scans [3] [4], and computed 

tomography (CT) [5]. Classification performance usually 
shows improvements with the number of utilised views, 
with detection performance ranging from 89% true positive 
rate (TPR) with 18% false positive rate (FPR) for single 
view imaging [2] to 97.2% TPR and 1.5% FPR in full CT 
imagery [5]. 
The general consensus in the baggage research community 
is that the classification of x-ray images is more challenging 
than the visible spectrum data, and that direct application of 
methods used frequently on natural images (such as SIFT, 
RIFT, HoG, etc.) does not always perform well when 
applied to x-ray scans [6]. However, identification 
performance can be improved by exploiting the 
characteristics of x-ray images by: augmenting multiple 
views; using a coloured material image or employing 
simple (gradient) density histogram descriptors [7] [8] [9]. 
Also, the authors of [10] discuss some of the potential 
difficulties when learning features using deep learning 
techniques, on varying size images with out-of-plane 
rotations.  
This work aims to develop a framework to automatically 
detect firearms from x-ray scans using deep learning 
techniques. The classification task focusses on the detection 
of steel barrel bores to determine the likelihood of firearms 
being present within an x-ray image, using a variety of 
classification approaches. Two datasets of dual view x-ray 
scans are used to assess the performance of the classifiers: 
the first dataset contains images of hand-held travel 
luggage, while the second dataset comprises scans of 
courier parcels. We handle the varying image size problem 
by combining the two views in one unique sample, while 
we do not explicitly tackle the out-of-plane rotation 
problem, instead, we rely on data augmentation techniques 
and on a dataset containing the threat objects recorded in 
different poses. 
We investigate two deep learning techniques, namely 
Convolutional Neural Networks (CNN) and Stacked 
Autoencoders, and two widely used classification models 
(Feedforward Neural Networks and Random Forests) and 
the results from their implementation are critically 
compared and discussed. 
The remainder of the paper is organized as follows. Section 
2 describes the datasets used in the empirical 
experimentation and illustrates the proposed framework; 
Section 3 reports details on the carried experiments and 
results; while conclusion and future work are given in 
Section 4. 
 

II. THREAT IDENTIFICATION FRAMEWORK 

The proposed framework for automated weapon detection 
consists of three modules: pre-processing, data 



augmentation and threat detection. The pre-processing 
stage comprises four steps: green layer extraction, greyscale 
smoothing, black and white (b/w) thresholding and data 
augmentation.  
The original dataset consists of over 22000 images of which 
approximately 6000 contain a threat item (i.e., a whole 
firearm or a component). The threat images are produced 
by a dual view x-ray machine: one view from above, and 
one from the side. Each image contains metadata about the 
image class (i.e., benign or threat), and firearm component 
(i.e., barrel only, full weapon, set of weapons, etc). From 
the provided image library, a sample of 3546 threat images 
were selected containing a firearm barrel (amongst the other 
items), and 1872 benign images only containing allowed 
objects. The aim of the classification is to discriminate only 
the threat items - as common objects are displayed in both 
‘benign’ and ‘threat’ samples (e.g., Figure 1 and Figure 2). 
During the pre-processing phase, each image is treated 
separately and the two views are combined before the 
classification stage. 
The raw x-ray scans are imported in the framework as a 3-
channel images (RGB) and scaled to 128x128 pixels in 
order to have images of same size for the machine learning 
procedure, and to meet memory constraints during training. 
From the scaled image, the green colour channel is 
extracted as the one found to have the greatest contrast in 
dense material. 
The resulting greyscale image is intended to reflect more 
accurately the raw x-ray data (i.e., measure of absorption). 
This step is performed to enable subsequent filtering and 
better identification of a threshold for dense material and 
eventually to facilitate the recognition of the barrel. 
A smoothing algorithm is applied on the greyscale image in 
order to reduce the low-level noise within it, while 
preserving distinct object edges. A number of smoothing 
algorithms were tested and a simple 3x3 kernel Gaussian 
blur was found to generate the best results. Then, on the 
smoothed image we apply a thresholding technique to 
isolate any dense material (e.g., steel). The chosen threshold 
is approximated within the algorithm to the equivalent of 
2mm of steel, which ensures that metal objects, such as 
firearm barrels and other components are kept. This step 
removes much of the benign background information 
within the image, such as organic materials and plastics. 
The resulting image is normalised to produce a picture 

where the densest material is black and the image areas with 
intensity below the threshold are white. At this point, the 
instances for which the produced image lacks any 
significant dense material, can be directly classified as 
benign. From cursory examination of the operational 
benign test set, this is a significant proportion of the samples 
for the baggage dataset, while only filtering out a small 
portion of images on the parcels one (mainly because in the 
courier parcels there is a higher variety of big and small 
metallic objects compared to the hand-held travel luggage). 
When applying deep learning techniques on images, it is 
often useful to increase the robustness of the classification 
by adding realistic noise and variation to the training data 
(i.e., augmentation), especially in the case of high 
imbalance between the classes [11]. There are several ways 
in which this can be achieved: object volume scaling: 
scaling the object volume V by a factor v; object flips/shifts: 
objects can be flipped/shifted in the x or y direction to 
increase appearance variation. This way, for every image in 
the training set, multiple instances are generated, 
combining different augmentation procedures and these are 
subsequently used by the models during the learning phase. 
Lastly, the two views of each sample are vertically stacked 
to compose one final image (Figure 1 and Figure 2).  
The four machine learning methods incorporated and 
critically compared in this work include two from the deep 
learning area, namely Convolutional Neural Networks 
(CNN) and Stacked Autoencoders; and two shallow 
techniques: Neural Networks and Random Forests.  
The CNN are considered state-of-the-art neural network 
architectures for image recognition, having the best results 
in  different applications, e.g.: from a variety of problems 
related to image recognition and object detection [12], to 
control of unmanned helicopters [13], x-ray cargo 
inspection [7], and many others. A CNN is composed of an 
input layer (i.e., the pixels matrix), an output layer (i.e., the 
class label) and multiple hidden layers. Each hidden layer 
usually includes convolution, activation, and pooling 
functions, and the last few layers are fully connected, 
usually with a softmax output function. A convolutional 
layer learns a representation of the input applying a 2D 
sliding filters on the image and capturing the information of 
contingent patches of pixels. The pooling is then is used to 
reduce the input size, aggregating (e.g., usually using a max 
function) the information learned by the filters (e.g., a 3x3 

Figure 1 A sample image containing a steel barrel bores (top left cylinder in the top row) from the baggage dataset. The 
left image (in both rows) is the raw dual view x-ray scan, in the middle, the grey scale smoothed one, and on the right, the 
b/w thresholded one. 



pixels patch is passed in the learned filter and the 3x3 output 
is then pooled taking the maximum among the nine values). 
After a number of hidden layers (performing convolution, 
activation, and pooling), the final output is flattened into an 
array and passed to a classic fully connected layer to 
classify the image. 
Stacked Autoencoders, also called auto-associative neural 
networks, are machine learning technique used to learn 
features at different level of abstraction in an unsupervised 
fashion. The autoencoder is composed of two parts: an 
encoder, which maps the input to a reduced space; and a 
decoder which task is to reconstruct the initial input from 
the lower dimensional representation. The new learned 
representation of the raw features can be used as input to 
another autoencoder (hence the name stacked). Once each 
layer is independently trained to learn a hierarchical 
representation of the input space, the whole network is fine-
tuned (by performing backpropagation) in a supervised 
fashion to discriminate among different classes. In this 
work we use sparse autoencoders, that rely on heavy 
regularization to learn a sparse representation of the input. 
 

III. EXPERIMENTATION AND RESULTS 

After the pre-processing and filtering off the images not 
containing enough dense material, we ended with 1848 and 
1764 samples for classification of the baggage and parcel 
datasets respectively. The baggage dataset comprises 672 
images from the benign class and 1176 containing threats; 
while the parcel dataset 576 and 1188 samples for the 
benign and threat classes respectively. Each dataset was 
split in 70% for training and 30% as independent test set. 
Due to their different operational environments, the 
baggage and parcel scans were trained and tested 
separately. 
In this experiment we used a three layer stacked 
autoencoder with 200, 100, 50 neurons respectively, 
followed by a softmax output function to predict the classes 
probability. For the CNN we emploed a topology with three 
convolutional layers (with 128, 64 and 32 neurons) 
followed by a fully connected neural network and a softmax 
output function. 
The RF was trained with 200 trees while the shallow NN 
had a topology of n-n-2, where n was the input size. Since 
both RF and shallow NN cannot be directly trained on raw 
pixels, a further step of feature extraction was performed. 
In particular, we used histograms of oriented Basic Image 
Features (oBIFs) as a texture descriptor (as suggested in 

[6]), which has been applied successfully in many machine 
vision tasks. The Basic Image Features is a scheme for 
classification of each pixel of an image into one of seven 
categories, depending on local symmetries. These 
categories are: flat (no strong symmetry), slopes (e.g., 
gradients), blobs (dark and bright), lines (dark and bright), 
and saddle-like. Oriented BIFs are an extension of the BIFs, 
that include the quantized orientation of rotationally 
asymmetric features [14], which encode a compact 
representation of images. The oBIF feature vector is then 
fed as input into the RF and the shallow NN classifiers. 
To evaluate the classification performance we employ three 
metrics: area under the ROC curve (AUC), the false 
positive rate at 90% true positive rate (FPR@90%TPR), 
and the F1-score. The AUC is a popular metric for 
classification tasks and the FPR@90%TPR is one cut-off 
point from the AUC, which describes the amount of false 
positives we can expect when correctly identifying 90% of 
all threats. The cut-off at 90% is suggested by [6] for the 
classification of x-ray images in a similar context. The F1-
score is also a widely used metric for classification of 
imbalanced datasets that takes into account the precision 
(the number of correctly identified threats divided by the 
number of all threats identified by the classifier) and the 
recall (the number of correctly identified threats divided by 
the number of all threat samples). 
 

Table 1 Baggage dataset results for the AUC, FPR@90%TPR 
and F1-Score metrics. The results are reported for the four 
classification techniques and three pre-processing step: raw 

data, grey scale smoothing and b/w thresholding. 

Metric 
Technique 

Raw Smoothing 
B/w 

thresholding 

AUC 

CNN 93 95 96 
Autoencoder 75 78 90 
oBIFs + NN 85 87 94 
oBIFs + RF 66 72 80 

FPR 
@ 

90% 
TPR 

CNN 9 7 6 
Autoencoder 70 60 26 
oBIFs + NN 50 31 14 
oBIFs + RF 86 66 53 

F1-
Score 

CNN 91 93 93 
Autoencoder 60 65 81 
oBIFs + NN 64 67 79 
oBIFs + RF 36 41 56 

Figure 2 A sample image containing a steel barrel bores (top right cylinder in the top row) from the parcel dataset. The left image (both rows) is the raw 
dual view x-ray scan, in the middle, the grey scale smoothed one, and on the right, b/w thresholded one. The parcel dataset usually contains a higher 
amount of steel objects and the barrels are better concealed. 



 
As it can be seen from Table 1, the CNN outperformed the 
other methods with AUC ranging between 93% and 96%, 
depending on the pre-processing stage. The second best 
method was the shallow NN with AUC values between 
85% and 94%, while the worst performance was achieved 
by the RF with 66%-80% AUC. Similar results were 
achieved when considering the FPR@90%TPR and F1-
score metrics. The CNN reached the best FPR (6%) when 
trained on the b/w thresholded images, while still having 
only 9% FPR when using raw data. On the other hand, while 
achieving 14% FPR with the last stage of pre-processing, 
the NN performance dropped drastically when employing 
the raw and the smoothed data, with 50% and 31% FPR 
respectively. The same can be observed when using the F1-
score: the CNN achieving up to 93%, followed by the 
Stacked Autoencoders and the shallow NN with 81% and 
79% respectively. Once again, it is worth noticing that the 
CNN was the only technique able to score high 
classification accuracy across all used pre-processing 
approaches, while the other methods needed more time 
spent on the features engineering and extracting steps. 
 
Table 2 Parcel dataset results for the AUC, FPR@90%TPR and 

F1-Score metrics. The results are reported for the four 
classification techniques and three pre-processing step: raw 

data, grey scale smoothing and b/w thresholding 

Metric 
Technique 

Raw Smoothing 
B/w 

Thresholding 

AUC 

CNN 80 79 84 
Autoencoder 65 66 75 
oBIFs + NN 65 69 84 
oBIFs + RF 63 63 79 

FPR 
@ 

90% 
TPR 

CNN 46 46 37 
Autoencoder 66 69 70 
oBIFs + NN 71 75 40 
oBIFs + RF 91 88 56 

F1-
Score 

CNN 86 83 87 
Autoencoder 40 43 55 
oBIFs + NN 36 32 63 
oBIFs + RF 34 42 58 

 
Table 2 shows the performance metrics on the parcel 
dataset, illustrating generally lower performance across all 
techniques. This can be explained by the larger variety of 
metal items contained in the courier parcels, when 
compared to the objects contained in a hand-held airport 
luggage. Again, the CNN outperformed the other 
considered methods, with an AUC ranging from 79% to 
84%, followed by the NN with 65% to 84%, RF with 63% 
to 79%, and the Stacked Autoencoders with 65% to 75%. 
The AUC achieved on the parcel dataset by the shallow 
NN, RF and Stacked Autoencoders are much closer than 
those achieved on the baggage one, where the best 
performing method outstands more. 
Yet again, the CNN achieved the lowest FPR (37%), 
followed by the shallow NN with 40% FPR, the RF with 
56% FPR and the Stacked Autoencoders with 70% FPR. 
Lastly, the F1-score metric produced the largest difference 
in values across the methods, with the CNN achieving up to 

87% F1-score, followed by shallow NN with 63%, RF with 
58% and Stacked Autoencoders with 55%. Also, in this 
case the CNN was the only technique able to classify threats 
with high accuracy, just using the raw images, where all 
other techniques performed very poorly (e.g., the AUC on 
raw data for the CNN was 15 percentage points better than 
the NN, while holding similar performance on the b/w 
thresholded one; 20 percentage points better in FPR@90% 
TPR when compared to the second best (Autoencoder); and 
even 46 percentage points better than the Autoencoder for 
the F1-score). 
 

IV. CONCLUSION 

In this work we investigated a deep learning framework for 
automated identification of steel barrel bores in datasets of 
X-ray images in operational settings such as airport security 
clearance process and courier parcel inspections. In 
particular we compare two deep learning methods 
(Convolutional Neural Networks and Stacked 
Autoencoders), and two widely used classification 
techniques (shallow Neural Networks and Random Forest) 
on two datasets of X-ray images (baggage and parcel 
datasets). We evaluated the methods performance using 
three commonly accepted metrics for classification tasks: 
area under the ROC curve (AUC), the false positive rate at 
90% true positive rate (FPR@90%TPR), and the F1-score. 
The obtained results showed that the CNN is not only able 
to consistently outperform all other compared techniques 
over the three metrics and on both datasets, but it is also 
able to achieve good prediction accuracy when using the 
raw data (whether the other techniques need multiple steps 
of data pre-processing and feature extraction to improve 
their performance). Furthermore, the CNN also achieved 
higher accuracy than the reported in literature results from 
human screening [1] (although, the employed datasets have 
not been screened by human experts, so an accurate direct 
comparison cannot be reported). Future work will explore 
application of different architectures for the CNN and 
Stacked Autoencoders, based on simulations on larger 
datasets to further investigate the result of this initial 
experimentation. 
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