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ABSTRACT 
Nowadays, the online travel agencies (OTAs) provide the 

main service for booking holidays, business trips, 

accommodations, etc. As in all online services where 

users, items, and decisions are involved, there is a 

necessity for a Recommender System (RS) to facilitate 

the navigation of catalogues and websites. For a travel 

RS, the use of a pure collaborative filtering approach is 

not feasible because the user-item matrix is way too 

sparse. For this reason, a content-based filtering is 

investigated in this work, focusing on one of its main 

problems: missing features. An initial exploratory analysis 

is used to identify a class of poorly ranked properties 

(e.g., Vacation Rentals (VR)). To deal with the 

missingness in the data, several state-of-the-art imputation 

methods (K-NN, Random Forests, and Gradient-Boosted 

Trees) are investigated and their performance critically 

analysed and tested. These techniques are applied 

following dataset preprocessing that includes cleaning, 

feature scaling, and standardization. In addition to that, a 

k-fold cross validation is used to validate the imputation 

results and reduce the possibility of overfitting. Three 

similarity measures (Jaccard, Weighted Hamming and 

Fuzzy-C-Means rankings) based on engineered non-

historical features (amenities and geographical position) 

are analysed and employed for determining the best proxy 

for unavailable features. 
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1. Introduction 

As in all online services where users choices, items, and 

decisions are involved, there is a necessity for a 

Recommender System (RS). Since the online travel 

agencies (OTAs) provide the main service of booking 

holidays, business trips and, accommodations a correct 

recommendation is what the user can benefit mostly from 

the system (money-wise and satisfactory-wise). 

Navigating through big catalogues is a tedious and time-

consuming activity and selecting the best deal among 

many similar offers is not a trivial task.  For a RS based 

on the users past experience (Collaborative Filtering 

(CF)), all users’ information and interactions with the 

catalogue are recorded in a user-item matrix in order to 

learn behaviours and popularity trends to give new 

recommendations. Since travel RS allows the user to 

navigate the catalogue and book hotels without being 

logged in the system, the use of a CF approach is not 

feasible because the user-item matrix is way too sparse 

(and sometimes even the user information is not available 

at all). For this reason, a Content-Based Filtering (CBF) 

approach is considered in this work (where the 

recommendation is given on items similarity), focusing on 

one of its main problems: missing features. An important 

event in the market of holidays lodging is represented by 

the explosive popularity of private renting (Vacation 

Rentals (VR)) gained in the past few years [1]. New VR 

(e.g., apartments, condos, apart-hotels, etc.) have been 

recently introduced in the OTAs (~40K records), and 

more than 160K records are expected to be added by the 

end of the year. The primary problem with this massive 

influx of new properties is the lack of related historic data 

which results in their unfair ranking in the system. For the 

new VR, the lack of features is not only historical (e.g., 

historical prices, purchases, popularity, etc.), but also in 

absents of basic characteristics (e.g., star rating and guest 

rating). For example, star rating (which is given for 

public properties by an Institutional body) is not 

regularized for private lodgings. On top of that, the guest 

rating will be missing for some time after the first 

appearance of the property, until recording at least a few 

users’ rating. Different missing data imputation 

techniques [2-4] and ad-hoc feature engineering can be 

used to enhance the CBF, allowing more diversity and 

fairer ranking of new items. This investigation includes 

analysis of the VR market. Experiments and results of the 

missing features imputation and item similarities 

prediction are also reported. The rest of the paper is 

organized as follows: Section 2 describes the catalogue 

datasets, and the employed missing data imputation 

methods are reported in Section 3. Session 4 discusses the 

carried out empirical study and the experiments results are 

critically analysed and discussed in Session 5. Finally, in 

Section 6 conclusion and future development are given. 

 

2. Datasets 

The collected data is coming mainly from three sources: 
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 Amenities: includes the characteristics of all the 

properties (e.g., Wi-Fi, pool, TV, etc.); 

 Destinations: records of all points of interest (e.g., 

cities, landmarks, airports, train and metro stations, 

etc.); 

 Properties: comprises all the relevant information in 

the system (e.g., property ID, name, latitude, 

longitude, etc.). 

The Amenities dataset is divided into four categories: 

Dining (e.g., restaurants, bar, etc.), Room (e.g., TV, Wi-

Fi, etc.), Property (e.g., reception, elevator, etc.) and 

Recreation (e.g., spa, pool, etc.) amenities.  

The cleaning of this dataset is performed in two steps. The 

first one filters out all the amenities that are not provided 

by the property or those requiring a fee (e.g., “No Free 

Parking”, “No Free Water”, “No Free Wi-Fi”). The 

second filter removes, for each category, the most 

frequently listed amenities (e.g., “Free Wi-Fi” appears in 

190K out of 290K properties) and the least frequently 

listed ones (roughly getting rid of the top 2% and bottom 

15% of the list). The obtained cleansed subset contains 

around 5 million records (16 amenities on average for 

each property) and 500 unique amenities. From the 

Properties dataset, only the active ones on the catalog are 

considered (~290K) and referred as active dataset. 

Destinations table contains all points of interest belonging 

to the following categories landmark, airport, metro 

station or train station. This set is cross-joined with the 

active properties in order to calculate the distances 

between each property and destination (Haversine 

distance [5]). The resultant set contains 200 million 

records of property-destination pairs. 

 

3. Missing Data Imputation Techniques 

3.1 Baselines 

The most common techniques used as baselines for 

comparison and analysis of predictive models are Mean 

and Median substitution [6]. The Mean (Median) 

substitution replaces the missing values with the mean 

(median) of the same attribute of the set without missing 

values. Despite being fast and of straightforward 

implementation, these techniques are only used here to for 

an initial sanity check and comparative purposes because 

they are generally rejected by the scientific community. 

3.2 K-NN Imputation 

In the K-Nearest Neighbours Imputation (KNNI) the 

missing values are imputed applying the mean, mode or 

median of the K most similar patterns, found by 

minimizing the Euclidean Distance between a pattern with 

missing values and the complete subset [2]. The KNNI 

approach comprises three steps: take only the datasets 

rows without missing data and use this subset as a dataset 

to select the nearest neighbours; choose a distance metric 

and compute the nearest neighbour between each pattern 

with missing data and the complete subset; impute the 

data, using the mean or the mode of the chosen 

neighbours. The only parameter to be selected is the 

number of neighbours K and the authors in [2] argue that 

the method is fairly insensitive to its choice. In all the 

simulations carried out in this work, we used a value of K 

= 10. The K-Nearest Neighbours has some advantages: 

the method can predict both, categorical variables (the 

most frequent value among the KNN) and continuous 

variables (the average among the KNN); it has easy 

interpretability and straightforward implementation; 

furthermore, it only imputes values in the original range 

of values of the complete set. Disadvantages of the 

approach are the low scalability to big dataset, (O(N
2
) 

comparison needed) and the robustness of the results is 

questionable (e.g., compared to ensemble methods). 

3.3 Random Forest Regression Imputation 

Random forests (RF) regression [3] is an evolution of the 

regression trees approach where multiples models are 

used together (ensemble) to predict the value of the 

substituted variable. Furthermore, the combination of 

multiple decision trees helps to reduce the risk of 

overfitting. Due to their flexibility, scalability, and 

robustness, the RF are considered one of the most 

successful machine learning models for classification and 

regression tasks [7]. RF have a wide range of benefits: 

they can easily handle categorical, continuous, discrete 

and boolean features, they are not very sensitive to feature 

scaling, and can capture non-linearities and feature 

interactions without any additional effort in the data 

preparation. This method trains a set of decision trees 

separately, increasing the parallelization and scalability 

while adding some randomness in order to ensure that 

each tree is different from the others. On the test set, the 

prediction of each tree is combined to reduce the variance, 

improving the performance metrics. The randomness is 

usually injected through two techniques: bootstrapping 

from the original dataset at each iteration; or using only a 

subset of features for each tree. To make a prediction on a 

new instance of the test set, all the trees are aggregated, 

usually predicting as final value an average of the 

predictions over all trees. The RF algorithm used in this 

work from in the ML Spark library [8]. 

3.4 Gradient-Boosted Trees Regression Imputation 

Gradient-Boosted Trees (GBTs) [4] are an ensemble of 

decision trees that iteratively train single trees in order to 

minimize a given loss function. On each iteration, the 

algorithm uses the current set of models (ensemble) to 

predict the value of each training sample which is 

compared to the observed label. The dataset is re-labeled 

to give more importance to the training samples with low 

prediction accuracy, hence, in the next iteration, the 

algorithm will put more effort in correcting those 

problematic instances. The re-labelling process is carried 

through a loss function and the final aim is to minimize it 

in successive iterations using the training set.  

The two main loss functions for regression are the 

Squared Error (        
 
   

 
) and the Absolute Error 
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(        
 
   ), where oi is the observed label and pi the 

predicted one for a given pattern i.  

 

Similar to RF, GBTs can handle a variety of features (e.g., 

categorical, continuous, discrete and boolean), no 

additional data scaling is needed and they are able to 

capture non-linear patterns and feature relationships. 

Since the GBTs can overfit during the training process, a 

validation set should be used in order to mitigate the 

possibility of memorizing the data instead of learning to 

generalise. The training is stopped when the improvement 

in the validation error is less than a certain tolerance. 

Usually, the validation error decreases initially with the 

training error and increases later in the learning when the 

model starts to overfit (while the training error continues 

to decrease). The GBTs algorithm used in this work is 

from the ML Spark library [8]. 

 

4. Empirical Study 

4.1 Research Objectives 

 Are the VR unfairly ranked by the Recommender 

System? Following the exploratory analysis of the 

available data, we found that only 2% of all VR have 

median rank in the top 10 positions and a missing data 

rate of 50% (Figure 1) for the guest rating and 19% 

for the star rating (Figure 2). 

 Can the Co-Clicks similarity be approximated with a 

non-historical similarity metric for new properties? 

The Co-Clicks similarity are compared with three 

other non-historical similarity metrics (i.e., Jaccard 

Similarity and Weighted Hamming Distance on 

amenities, and Fuzzy-C-Mean clustering centroid 

distance on geographical features). The metrics and 

the results of their implementation are described and 

analysed in Section 5.1. 

 Can the guest and star ratings be imputed using non-

historical features? The missing features are imputed 

with two baselines (i.e., Mean and Median Imputation) 

and three state-of-the-art techniques for missing data 

imputation (K-NN, RF and GBTs). The application of 

these methods is discussed in Section 5.2, followed by 

the analysis of the results. 

4.2 Evaluation and Validation 

A variety of metrics for comparing and evaluating data 

imputation and predictive models can be found in the 

literature [9]. Among them, Mean Squared Error (MSE) 

and Mean Absolute Error (MAE) are the most popular. 

The MAE is argued to be more accurate and informative 

than the MSE [10], hence, it is used in this work to assess 

the results from the imputation of guest and star ratings. 

The MAE is easy to interpret, reflecting on average how 

many error stars are there between the observed and the 

predicted value (e.g., MAE = 0.5 means an average error 

of a half star). One disadvantage of this measure is its 

inability to specify whether the rating is underestimated or 

overestimated. When two lists (rankings) need to be 

compared (e.g., in RS), the use of Mean Average 

precision at X (MAP@X) is recommended [11]. The 

MAP@X measures the distance of a particular item 

between the predicted rank and its position in the target 

list:          
 

 
        

    where N is the number 

of items and P(m) is the precision at cutoff X calculated 

as: 

      
 

         
                      

                            

 , 

 

with om and pm as observed and predicted item ranks 

respectively. For validation purposes, the dataset is split 

in training and test sets (70% - 30%), then using the 

training set we apply a k-fold cross validation (k = 10). 

The test set is generated using uniform sampling without 

repetitions, and the rest of the data is left as training and 

validation sets. Furthermore, the ML Spark pipelines [8] 

are used to ensure correctness and replicability of the 

experiments. 

Figure 1 Distribution of guest rating (ranging 1 to 5 with 

0 used to represent missing ratings) across all property 

types (e.g., ‘Hotel’, ‘Vacation Rentals’, ‘Motels’, etc.) 
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4.3 Big Data Tools 

During the development of this research different 

frameworks for distributed computing on big data are 

used. The Hadoop framework, along with some of its 

successors (e.g., Spark), permitted the management 

(Sqoop, Oozie), exploration (Hive) and the 

implementation of scalable and distributed algorithms 

(Spark). Hive [12] is an open source data warehouse 

solution built on top of Hadoop which supports queries 

expressed in HiveQL (an SQL-like declarative language, 

which is translated in map-reduce jobs executed on 

Hadoop). The query language supports primitive types, 

collections, arrays, maps and nested compositions of 

primitive types. Hive also includes a system catalog, 

namely Hive-Metastore, containing schemas and statistics 

useful for data exploration and query optimization. We 

use it in this work mainly for data pre-processing (e.g., 

data filtering, aggregation, and basic statistics). Apache 

Spark [13] is an open source framework for distributed 

computing (driver-workers paradigm) written in Scala 

[14]. It is composed of a main core package and four 

components: SparkSQL, ML Spark, SparkStreaming and 

GraphX. The main advantage of Spark is that, differently 

from the Map-Reduce paradigm it is not built on acyclic 

data flow model. The main data structure is the ‘resilient 

distributed dataset’ (RDD) which is distributed and stored 

in the fastest part of the memory (e.g., RAM) and can be 

easily accessed multiple times when needed for machine 

learning iterative algorithms.  

 

Spark supports two types of operations: transformations 

and actions. The transformations are ‘lazy’ and an 

execution plan is created when they are involved [13].  

They are only computed when an action requires a result 

to be returned to the driver program (e.g., print, collect, 

count, etc.). This design enables Spark to run more 

efficiently, since only the last result (required by the 

action) is returned to the main node of the cluster, 

reducing network bottlenecks. The fault tolerance is 

achieved by keeping track of the “lineage” of each RDD 

(the sequence of operations that produced it), so that it can 

be reconstructed in the case of data loss. ML Spark is a 

distributed machine learning framework built as 

additional module on top of Spark. Due to its distributed 

in-memory architecture (using RDDs) it is considered 9 

times faster than the disk-based implementations of 

Mahout [8]. Many machine learning algorithms and 

statistical procedures are implemented in the package and 

can easily be used through the Spark pipelines. 

 

5. Experimentation and Results 

5.1 Co-Clicks Similarity prediction 

Table 1 Scaled co-clicks similarity for five items within 0 

and 1, where 1 means most co-clicked items and 0 - never 

co-clicked items. 

 Item 1 Item 2 Item 3 Item 4 Item 5 

Item 1 - 0.98 0.67 0.42 0.84 

Item 2 - - 0.35 0.88 0.10 

Item 3 - - - 0.40 0.32 

Item 4 - - - - 1.00 

Item 5 - - - - - 

 

The Co-Clicks is an item-item measure which takes into 

account the properties co-clicked by the users in a specific 

time frame. Let us assume a group of 1 million users are 

navigating through the London properties catalog over a 

year. Every time a user clicks on multiple items during the 

search, the number counting the co-clicked pairs will 

increase by one. All the values are scaled within [0,1] 

range for estimating the similarity (Table 1). The main 

problem of this similarity measure, based on implicit 

feedback from the user, is that for each new item added to 

the catalogue, there will be no historical data available 

resulting in 0 similarity with all other items.  The first 

objective of this research is to find an approximation 

function (based on non-historical features) to be used as a 

proxy of the Co-Clicks (when they are not available). To 

achieve this, two sets of engineered features based on 

amenities and geographical position are investigated. 

Two experiments are carried out using the amenities: the 

first one implements the Jaccard similarity metric and the 

second one - the Weighted Hamming Distance. The 

Jaccard similarity (within [0,1] interval, where 0 means 

completely dissimilar and 1 when identical) is defined as: 

          
      

      
    

where A and B are two sets of amenities related to 

properties i and j. Jaccard similarity only takes into 

account the number of shared amenities, without giving 

any preference to the amenity popularity. On the other 

hand, the Weighted Hamming Distance (within [0, inf] 

range, smaller the value the greater the similarity) takes 

into account the number of properties in which the 

amenity is available: 

                        , 

Figure 2 Distribution of star rating (ranging 1 to 5 with 0 

used to represent missing ratings) across all property types 

(e.g., ‘Hotel’, ‘Vacation Rentals’, ‘Motels’, etc.) 
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where W is the amenity weight vector. Each element of W 

is calculated as Inverse Document Frequency (idf): 

                
 

           
    

In this equation D represents all amenity sets, N is the 

total number of items (properties), and             is 

the number of properties where the amenity k is available. 

For the geographical features, a Fuzzy-C-Means [15] (or 

soft clustering) algorithm is used to group the properties 

and subsequently the Euclidean Distance of their 

membership functions to calculate their similarities. In 

order to cluster the properties, a three stage Spark pipeline 

is built: vectorization; standardization; and clustering. 

The vectorization transforms a Dataframe with one 

column per feature, in a one column Dataframe 

containing a vector of features. The 0-mean and unit-

variance standardization is then applied to each feature in 

the vector and the clustering groups the properties based 

on a given parameter c (number of clusters). The choice 

of c is empirically tested with values between 5 and 100 

with incremental step of 5. The final choice resulted in c = 

10 for two main reasons: the MAP@X accuracy was not 

significantly improving for values greater than 10; and the 

clusters were meaningful (e.g., each cluster containing 

properties in the city centre, or near commute 

connections, or hot landmarks, or even airports). For the 

Co-Clicks similarity prediction, the MAP@x (x = 5) is 

used as accuracy measure. The results reported in Table 2 

show the accuracy of the Jaccard similarity, Weighted 

Hamming distance and Fuzzy-C-Means rankings against 

the Co-Clicks similarity with rank = 1 and rank ≤ 5 (the 

first five are chosen because they are at the top of the 

screen). As it can be seen from Table 2, the accuracy 

using the amenities as similarity measure is very low 

(11% and 25% for the Jaccard similarity and 9% and 22% 

for the Weighted Hamming Distance respectively). The 

poor results can be explained by the correlation between 

the Co-Clicks and the position of the properties in the 

raking (two closely ranked items will have higher 

probability of being co-clicked in the same session), while 

the amenities similarity (either Jaccard or Weighted 

Hamming Distance) only correlates properties based on 

the number and type of matching amenities. 

 

Table 2 MAP@5 accuracy scored by the three proposed 

similarity measures, compared only on the pairs of 

properties with Co-Clicks rank = 1 and Co-Clicks ≤ 5. 

The second column shows the probability of a property 

ranked 1 by the Co-Clicks similarity, to be ranked in the 

first 5 positions by the other similarity metrics. The third 

column shows the accuracy of a property ranked in the 

first 5 positions by the Co-Clicks similarity and all the 

other similarity metrics. 

Method Rank = 1 Rank ≤ 5 

Jaccard Similarity Ranking 0.11 0.25 

Weighted Hamming Ranking 0.09 0.22 

Fuzzy-C-Means Ranking 0.35 0.60 

 

For the Fuzzy-C-Means ranking, the achieved accuracy is 

much higher (35% and 60% for the two ranking groups 

respectively) and this could be related to the fact that 

usually the listed properties are geographically close (in a 

given search session the shown properties are from the 

queried city area). While the Co-Clicks still gives a better 

insights of the properties similarity, implicitly reflecting 

the users’ behaviour and choice; the geographical 

clustering offers a good approximation with a 35% of 

correctly ranked items in first position (rank = 1), and 

60% for the top 5 rankings, when the Co-Clicks similarity 

information is missing (due to the lack of historical data 

for the new properties). 

5.2 Guest Rating and Star Rating Imputation 

Two of the most frequently used features when selecting a 

property from a catalogue are the users rating and the 

quality of the property (e.g., star rating). Very often this 

information is missing when a new property is added to 

the website and both the user and the RS are most likely 

to underestimate the property. In order to provide fairer 

ranking, as a second objective of this research, the two 

ratings are imputed using available non-historical features 

(e.g., amenities and geographical position). From the 

initial dataset we take out all the instances with missing 

guest or star rating, which results in a complete subset 

(with no missing values). This set is further split into 70% 

training and 30% testing subsets. Then the guest and star 

ratings are removed artificially from the test subset. This 

testing subset with missing values will be used for 

assessment of imputation methods performance. Two 

baselines (Mean and Median) and three state-of-the-art 

approaches for missing data imputation are used in this 

work: K-Nearest neighbours (K-NN), Random Forests 

regression and Gradient Boosted Trees regression 

(GBTs).  Firstly, the two baselines are used to calculate 

the Mean (Median) of the guest rating (star rating) on the 

training set and substituted in the test set. Secondly, the 

model based imputation approaches are employed.  For 

each instance from the test set (all with missing ratings), 

K-NN is used to calculate the k (k = 10) most similar 

neighbours from the training subset. For this purpose, the 

Euclidean Distance on the weighted amenities and 

geographical features is used to find the k nearest 

neighbours. The imputed value then is the average of 

these k guest ratings (star ratings).  For the RF and 

GBTs, four stage Spark pipeline is set up to ensure 

replicable experiments: vectorization, standardization, 

cross validation, and regression. The first two steps have 

already been described in Section 5.1. The cross 

validation step splits the complete dataset (without 

missing ratings) into a set of folds which are used as a 

training and validation subsets. E.g., with 10 folds, the 

cross validator generates 10 (training, validation) dataset 

pairs, each of which uses 9/10 of the data for training and 

1/10 for validation iterating through them during the 

training. The regression step involves the two algorithms 

described in Sections 3.3 (RF) and 3.4 (GBTs) from the 

ML Spark library. Table 3 contains results from applying 
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the above imputation techniques on guest/star ratings. As 

expected, the two baselines (Mean and Median) achieved 

the lowest accuracy with MAE of 1.21 and 1.01 for the 

guest rating, and 0.70 and 0.75 for star rating. From the 

implemented state-of-the-art algorithms, K-NN produced 

the worst accuracy (0.70 and 0.50 for star and guest rating 

respectively). This approach also appeared to be very 

slow, because of the large number of samples in the 

training set (~200K samples). The GBTs technique with 

standardized features achieved the best result (0.36 for 

star rating and 0.34 for guest rating), followed by the RF 

with the same setup (0.39 and 0.47 for star/guest rating 

respectively). The same experiments were repeated 

removing the amenities from the dataset in order to assess 

the importance of this feature. While the use of amenities 

as a feature failed the prediction of the Co-Clicks 

similarity (Table 2), their use in the ratings imputation 

improved the overall accuracy (Table 3). These 

contradictory results can be explained by the fact that the 

amenities partially define the quality of the property (e.g., 

property with amenities such as pool and spa has higher 

likelihood to be rated as a 5 star). On the other hand, the 

geographical position seems to be useful for determining 

the guest rating (e.g., properties close to stations, airports 

or famous landmarks have greater probability of receiving 

a higher rating). 

 

Table 3 Guest Rating and Star Rating imputation errors. 

The MAE is used as error function to compare the 

imputation results of two baselines (Mean and Median 

imputation) and three state-of-the-art approaches (K-NN, 

RF, and GBTs). The experiments are performed with (v) 

or without (-) amenities (Am.) and standardisation (St.). 

 

 

6. Conclusion 

The missing data problem for travel Recommender 

Systems is investigated giving particular focus on the VR 

market. After an initial exploratory analysis, the dataset of 

properties at hand showed a 50% and 19% missingness 

for guest rating and star rating respectively. Furthermore, 

the properties similarity, namely the Co-Clicks, is always 

missing when a new property is added in the catalog 

(because there is no historical data of users co-clicks with 

other properties). To deal with that, non-historical features 

(amenities and geographical position) are introduced,  

analysed and employed to determine the best proxy of the 

Co-Clicks (when not available). Results from the applied  

three similarity measures (Jaccard, Weighted Hamming 

and Fuzzy-C-Means rankings) showed the Fuzzy-C-

means to be the best approximation metric with 35% of 

correctly ranked items in first position, and 60% for the 

top 5 rankings, indicating a correlation between the co-

clicked properties and their position on the map.  The 

applied data imputation techniques for mitigating the 

guest and star ratings missingness (two baselines: Mean 

and Median; and three state-of-the-art models: K-NN, RF, 

and GBTs), resulted in recommending the GBTs as the 

most suitable model for this task, achieving the lowest 

MAE (0.36 and 0.34 for guest and star rating 

respectively), followed by the RF and KNN. As expected 

the baselines scored the lowest accuracy, with an error 

greater than 1 for guest rating and 0.75 for the star rating. 

Furthermore, the importance of amenities as a feature for 

this task was assessed repeating the same experiment 

using only the geographical features. While the use of 

amenities failed the prediction of the Co-Clicks similarity 

(with an accuracy between 9% and 25%), their use in the 

ratings imputation always improved the overall accuracy. 

Future work would analyse the behaviour of the RS when 

the engineered and imputed features are used during the 

recommendation process for VR properties.  In addition to 

that, new error functions will be tested in order to assess 

and distinguish the current under/over estimation of the 

imputed ratings by the model based techniques. 
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