
Distributed Neural Networks for Missing Big Data Imputation

Alessio Petrozziello1, 2, Ivan Jordanov1 and Christian Sommeregger2

University of Portsmouth, Portsmouth, U.K.1, Expedia Inc., London, U.K.2

 Alessio.Petrozziello@port.ac.uk, Ivan.Jordanov@port.ac.uk, Christian.Sommeregger@hotels.com

ABSTRACT
In this paper we investigate the use of Distributed Neural
Networks for the imputation of missing values in Big Data
context. The presented framework for data imputation is
implemented in Spark, allowing easy imputation as an
additional step to the data pre-processing pipeline. The
Distributed Neural Networks model is using Mini-batch
Stochastic Gradient Descent, scaling well with the cluster
size and minimizing the communication among the
workers. The model is tested on a real-world
Recommender Systems dataset, where the missing data is
generally a problem for new items, as the systems ranking
is usually biased towards the popular items. The model is
compared with univariate (Mean and Median Imputation)
and multivariate (K-Nearest Neighbours and Linear
Regression) imputation techniques, and its performance is
validated using prediction accuracy and speed.
Furthermore, we evaluate the speedup compared to the
sequential implementation of Neural Networks with
Stochastic Gradient Descent.

KEY WORDS
Distributed Computation, Neural Networks, Missing Data
Imputation, Big Data.

1. Introduction
A necessary step to consider before applying any machine
learning technique is to deal with eventual missing data in
the used dataset. Mechanisms of missing data belong to
three categories [1] [2]: missing at random (MAR) the
missingness may depend on observed data but not on
unobserved data (in other words, the cause of missingness
is considered). Missing completely at random (MCAR) —
a special case of MAR, where the probability that an
observation is missing is unrelated to its value or to the
value of any other variable. Missing not at random
(MNAR), where the missingness depends on unobserved
data. The last group usually yields biased parameter
estimates, while MCAR and MAR analyses yield unbiased
ones (at the same time the main MCAR consequence is a
loss of statistical power). Ideally, dealing with missingness
requires analysis strategy that leads to least biased
estimation, without losing statistical power. The problem is
the contradictory nature of those criteria: using the
information from the partial data in missing data samples
(keeping the statistical power), while substituting the
missing data samples with estimates, inevitably brings
biases. Many techniques have been explored and exploited

in the last few years [2] [3] and can be divided into two
main categories [4] [5]: deletion methods and model-based
methods. The former includes pair-wise and list-wise
deletion (where the patterns with missing values are simply
removed, or where, in presence of missing values, the
pattern is not dropped, and its other values are still used
during the analysis), the latter is divided into single
imputation (not considering the correlation between the
missing value and the other variables in the dataset, and
imputing the data using only information of the same
attribute) and multivariate imputation (where the
correlation among variables in taken into account during
the imputation).
When Big Data is considered, the problem of the missing
data imputation is still of primary importance for the
successful implementation of machine learning techniques
(e.g., recommendation tasks where millions of users and
thousands of items are involved). Usually, the probability
of having missing data increases with the number of
features in the dataset and with the number of samples,
making the imputation task in big data context extremely
important. However, if the missing entries are few
compared to the scale of the dataset, a deletion method is
applicable without losing statistical strength. On the other
hand, if the number of missing values grows with the size
of the dataset the imputation is necessary to preserve, or
even increase, the statistical power of the data (or in general
to not lose too many samples during the pre-processing
stage). Unfortunately, all the imputation techniques
proposed in literature [2] [3] [6] require the whole dataset
to be provided for the model at imputation time, which
means that adequate memory allocation is needed, making
the task unfeasible for datasets composed of hundreds of
features and millions of samples. Not many methods have
been proposed to cope with the missing data problem in the
big data field [7] due to the inherent complexity of the task
(both related to time and memory constraints).
Neural Networks (NN) are state of the art machine learning
(ML) approach for several different domains with recent
advances in image processing [8], pattern and speech
recognition [9], that involve fitting of large architectures
(with thousands of weights) to large datasets (several
gigabytes to few terabytes). Given the scale of these
machine learning problems, training can take up to days or
even weeks on a single machine using the commonly
applied deterministic optimization techniques (e.g.,
stochastic gradient descent (SGD)) [10]. For this reason,
research focussed on the distribution of machine learning

algorithms across multiple machines. Different attempts
have been made to speed up the training of NN using
asynchronous jobs [11]. In the parameter server model
[12], one master holds the latest model parameters in
memory, serving the workers nodes on request. The nodes
compute the gradient on a mini batch drawn from the local
hard drive. The gradients are then shipped back to the
server, which updates the model parameters. With the
introduction of the MapReduce paradigm [13], different
frameworks emerged to leverage resources of a cluster
(e.g., Hadoop [14] and Spark [15]). These frameworks
simplified the implementation of large-scale analytics and
machine learning tasks (e.g., Apache Mahout [14]). In this
paper, we propose a Distributed Neural Network
Imputation (D-NNI) framework (Figure 1), leveraging the
idea of mini-batch training in a distributed fashion over
Spark to reduce training time, while making at the same
time the imputation of new values possible even for larger
datasets. The proposed imputation approach is tested on a
real-world dataset composed of 400 thousand samples [16],
and 645 features (of which 57 include missing values). The
remainder of the paper is organized as follow. In Section 2
the proposed framework for Missing Data Imputation with
Distributed Neural Networks is described. In Section 3 we
introduce the missing data problem for properties
recommendation in Online Travel Agencies, while the
dataset and the imputation techniques are reported in
Section 4 and Section 5 respectively. Finally, the results of
the experimentation are analysed in Section 6 and the
conclusion is given in Section 7.

2. Distributed Neural Networks on Spark

Apache Spark [15] is an open source framework for
distributed computing (driver-workers paradigm) written
in Scala [17]. It is composed of a main core package and
four components: SparkSQL, ML Spark, SparkStreaming
and GraphX. The main advantage of Spark is that,
differently from the Map-Reduce paradigm it is not built on
acyclic data flow model. The main data structure is the
‘resilient distributed dataset’ (RDD) which is distributed
and stored in the fastest part of the memory (e.g., RAM),

and can be easily accessed multiple times when needed for
ML iterative algorithms. ML Spark is a distributed machine
learning framework built as additional module on top of
Spark, considered to be up to 100 times faster than the disk-
based implementations of Mahout [14]. Many pre-
processing operations, statistical procedures and ML
algorithms are implemented in the package and can easily
be used through the Spark pipelines [18].

Table 1 Neural Network Trait

trait NN {
 def initNetwork(nInputs:Int, nOutput:Int):Unit
 def setWeights(weights: DenseVector[Double])
 def apply(denseVector: DenseVector[Double],
 memKey:String)
 def apply(denseMatrix: DenseMatrix[Double],
 memKey:String)
 def backpropagate(loss:DenseVector[Double],
 memKey:String)
 def backpropagate(loss: DenseMatrix[Double],
 memKey:String)
 def getGradient()
 def getWeights()
 def getNumberOfWeights()
 def getLastLayerWsize()
}

2.1 Implementation
The implementation of the imputation stage through
distributed neural networks (D-NNI) builds on Apache
Spark [15] and the Neuron library [19] (a lightweight
Neural Network library written in Scala providing all the
building blocks (e.g., layers, optimizers, back-propagation,
etc.), to create our own distributed version (Table 1shows
the Neural Network Scala interface [19]). By building on
top of Spark, we utilise the advantages of modern batch
computational frameworks. These include the high-
throughput loading and pre-processing of data and the
ability to keep data in memory between operations.
Furthermore, the implementation of the D-NNI as a
pipeline stage [18] allows the imputation to be easily
included in the pre-processing of any dataset. Table 2 and
Table 3 show code snippets of how the imputation stage is

Figure	1	Distributed	Neural	Network	architecture	in	Spark	(Section	2.2).		

created. In particular, Table 2 presents how the layout of
the network is defined (using a sequence of layers, with the
initial one representing the input, and the last one the output
(which can be as large as the number of imputed features)),
while Table 3 demonstrates the creation of a Spark pipeline
imputation stage. The NeuralNetworkImputationStage
object exposes several methods: to set the input columns to
be used during the imputation (i.e., the features used during
the learning phase), the target columns (the ones containing
missing values), the predicted columns (the stage returns a
new dataframe containing additional columns with the
imputed values), and the additional parameters used during
the imputation procedure (the NN layout as defined in
Table 2, the optimizer hyper-parameters, the weights
initialization procedure, the loss function to be optimized
during the learning, etc).

Table 2 Example of network specification for D-NNI

networkLayout: Seq[layerConf] = Seq(
 layerConf(“linear”, 20, 10),
 layerConf(“Relu”, 10, 10),
 layerConf(“linear”, 10, 5),
 layerConf(“Relu”, 5, 5),
 layerConf(“linear”, 5, 1),
 layerConf(“sigmoid”, 1, 1)
)

Table 3 Create a Missing Imputation Stage in a Spark pipeline,
the “fit” method will train the model to predict the missing

values, once the model is trained (i.e., imputationModel object),
the missing values can be imputed using the “transform”

method of the model.

val imputationModel = new NeuralNetworkImputationStage()
 .setFeatureColumnName(“features”)
 .setTargetColumnName(“missingFeatures”)
 ,setPredictColumnName(“imputedFeatures”)
 .setOptimizerParameters(optimizerSGD(10, 5, 0.0001)
 .setNetworkLayout(networkLayout)
 .trainWithMatrices(true)
 .setWeightInitializationType(“heUniform”)
 .useValidation(true)
 .setValidationPerc(0.10)
 setLossFunction(“l2distance”)
 .fit(data)
val newData = imputationModel.transform(data)

2.2 Distributed Neural Networks
In this work we use a data-parallelization scheme with
synchronization and a central coordinator, labelled naïve
parallelization by [20]. In every iteration, each worker node
c in our cluster C computes a local gradient 𝑔" for a batch
of data 𝑏", then these vectors are (tree-) aggregated,

𝑔 =

1
𝐶

𝑔"(𝑏")
"

 (1)

and sent back to the master which performs the SGD update
step and broadcasts the new weights (W) to all 𝑐	 ∈ 𝐶
(Figure 1). In the absence of network overhead and
aggregation cost this setup scales linearly with the number
of worker nodes. Under more realistic conditions, the

optimal number of nodes will depend on the size of 𝑏, and
the network overhead.

3. Missing Data in Online Travel Industry: A
Case Study

As in all online services where user choices, items, and
decisions are involved, there is a necessity of a
Recommender System (RS). Online travel agencies
(OTAs) provide the main service for booking hotels,
apartments, and packages including many options, an
adequate recommendation is what the user can mostly
benefit from the system. For a RS based on users past
experience (Collaborative Filtering (CF)), all users’
information and interactions with the catalogue are
recorded in a user-item matrix in order to learn behaviours
and popularity trends when giving new recommendations.
Since travel RS allows the user to navigate the catalogue
and book hotels without being logged in the system, the use
of a CF approach is not feasible, because the user-item
matrix is way too sparse (and sometimes even the user
information is not available at all). For this reason, a
Content-Based Filtering (CBF) approach is considered in
this work (where the recommendation is given on items
similarity), focusing on one of its main problems: missing
features. An important event in the market of holidays
lodging is represented by the explosive popularity of
private renting (Vacation Rentals (VR)) gained in the past
few years [21]. and more than 400K records are expected
to be added in the next year (Figure 2 shows the properties
growth in the catalogue and related growth of missing data
the past 15 years). The primary problem with this massive
influx of new properties (1/4 of the total properties were
added to the catalogue in 2017) is the lack of related
historic data which results in their unfair system ranking.
New VR (e.g., apartments, condos, apart-hotels, etc.) have
been introduced in the OTAs (~80K records) in the 2017,
The proposed D-NNI is tested on the imputation of missing
values on the OTAs problem and the results are compared
with univariate imputation techniques (Mean and Median
Imputation by location) and multivariate techniques
implemented in Spark (e.g., K-Nearest Neighbours
Imputation [22] and Linear Regression Imputation [7]).
Performance results for the data imputation task and
speedup are reported in Section 6.
.
4. Datasets
The collected data is from four sources:
• Amenities: includes the characteristics of all the

properties (e.g., Wi-Fi, pool, TV, etc.);
• Properties: comprises all the relevant information in

the system (e.g., property ID, name, latitude, longitude,
etc.);

• Destinations: records of all points of interest (e.g.,
cities, landmarks, airports, train and metro stations,
etc.);

• Displayed Prices: stores the historical prices shown on
the online travel agency website.

The Amenities dataset is divided into four categories:
Dining (e.g., restaurants, bar, etc.), Room (e.g., TV, Wi-
Fi, etc.), Property (e.g., reception, elevator, etc.) and
Recreation (e.g., spa, pool, etc.) amenities. The cleaning
of this dataset is done in two steps: filtering out all the
amenities that are not provided by the property and those
requiring a fee (e.g., “No Free Parking”, “No Free
Water”, “No Free Wi-Fi”); and secondly, for each
category, removing the most frequently listed amenities
(e.g., “Free Wi-Fi” appears in 190K out of 290K
properties) and the least frequently listed ones (roughly
getting rid of the top 2% and bottom 15% of the list). The
obtained cleansed subset contains around 5 million
records (16 amenities on average for each property) and
500 unique amenities. From the Properties dataset, only
the catalogued active ones are considered (~360K) and
referred as a active dataset. Destinations table contains
all points of interest belonging to the following categories
landmark, airport, metro station or train station. This set
is cross-joined with the active properties in order to
calculate the distances between each property and

destination (Haversine distance [23]). The resultant set
comprises 200 million records of property-destination
pairs. The historical Displayed prices on the website are
calculated using three different time spans: a 1-day; a 3-
day; and a 7-day average. The four mentioned datasets
(e.g., Amenities, Destinations, Properties and Displayed
Prices) are joined together with the property ID to have
all needed information for a specific property. A subset
of features of this final dataset is showed in Table 4, while
a summary of the features contained in each dataset is
given in Table 5.

Table 5 Summary of the features used in the OTAs dataset

Feature Type # of Features
Amenities 500
Properties 20
Destinations 11
Displayed Prices 57

q	

4.2 Evaluation and Validation

A variety of metrics for comparing and evaluating data
imputation and predictive models can be found in the
literature [9]. Among them, Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) are the most
popular [24]. The MAE is argued to be more accurate and
informative than the RMSE [24], successively refuted by
[25], where it is stated that the two measures picture
different aspects of the error. One major problem of these
metrics is that both RMSE and MAE are scale dependent
and therefore of hard comparability across different
features. For this reason, we consider the R2 coefficient of
determination instead [26] (here described as function of
the Sum of Squared Explained (SSE) and Sum of Squared
Total (SST)):

 𝑆𝑆𝐸/ = 	 𝑦1/ − 	𝑦1/
3
,

156

(2)

𝑆𝑆𝑇/ = 	 𝑦1/ − 	𝑚𝑒𝑎𝑛 𝑦1/

1

3
,

(3)

𝑅2/ = 	

𝑆𝑆𝐸/
𝑆𝑆𝑇/

= 1 −
𝑁 ∗ 𝑅𝑀𝑆𝐸/3

𝑆𝑆𝑇/
		,

(4)

ID nDays
in

Catalog

Latit
ude

Longitu
de

Am.
1

..

Am.
500

land
mar
ks

Dist
Airport

Avg
Price
last
3

days

#bookings
last 180

days

#bookings
last 365

days

Pct
bookings

month
1

140759 5730 37.78 -122.40 0 0 92 19.27 1.47 511 2254 0.05
431602 1484 -2.42 -54.73 0 0 1 5.29 0.94 0 84 0

17905696 133 21.73 -79.99 0 1 1 >500 0 - - -
189642 5730 32.91 -97.01 1 1 1 3.36 0.65 889 4250 0.09

679498048 28 41.38 2.18 0 0 137 0.24 1.43 - - -
637314944 111 27.79 -82.79 1 0 0 16.03 1.39 - - -
636663872 112 47.80 7.67 1 1 2 24.87 2.91 30 - -

Table 4 Sample of the dataset containing the features used for the properties recommendation. Missing values (values that are not
available for a short history) are denoted with a ‘-‘.

0

20

40

60

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

year

Lo
g(
gr
ow
th
)

Figure 2 Log growth of the properties in the catalogue (black
line) and log growth of missing data (red line)

R2 is closely related to RMSE but has an additional
normalization term which maps it to the (0,1) interval.
This ensures comparability across all k elements of the
label vector. Assuming that we weight prediction errors
equally across all k variables, we can define our objective
as finding the maximum of 𝑅2// .
Notice that this is equivalent to minimizing the following
weighted squared loss:

1
𝑆𝑆𝑇/

	 𝑦1/ − 	𝑦1/
3

1

.
/

 (5)

Through this paper the predicted missing values for pattern
i and feature k are referred as 𝑦1/ , the known values as 𝑦1/ ,
and N is the sample size.

Speedup [27] is the main metric for measuring distributed
algorithms scaling, and it is the ratio between the
computational speed of the sequential and the distributed
counterpart:

Speedup N,	P = 	

Tseq 𝑁, 1
Tpar N,	P

 (6)

where N is the size, P is the number of machines and the
denominator represents the running time of the parallel
version. For validation purposes, the dataset is split into
training and test sets (70% - 30%) and the imputation is
performed 10 times to cope with the randomness.
Furthermore, the ML Spark pipelines [8] are used to ensure
correctness and replicability of the experiments.

5. Missing Data Imputation Techniques
5.1 Mean and Median Imputation by Location

The most common techniques used as baselines for
comparison and analysis of predictive models are Mean
and Median imputation [6]. The Mean (Median)
substitution replaces the missing values with the global
mean (median) of the same attribute of the set without
missing values. Instead of the global mean (median), in this
work we adopt the Mean and Median Imputation by
Location. This measure should provide more accurate
results as geographic information is implicitly used
(property in the same region are more likely to share prices
and other historical similarities).

𝑦1/ = 	𝑤/𝑚1	, (6)

where wk represents the vector of location averages and mi
- the one-hot encoded representation of the location ID.
This baseline is of fast and straightforward
implementation, able to easily scale with the size of the
considered dataset. On the other hand, these univariate
imputation techniques are generally rejected by the
scientific community due to their weak statistical power.

3.2 K-NN Imputation
In the K-Nearest Neighbours Imputation (KNNI), each
missing observation i is imputed with the average over its

most similar patterns. The set of neighbours Li is found by
minimizing the Euclidean Distance between the pattern i
and the complete subset [22]:

𝑦1/ = 	
𝑑1PQ6

𝑑1PQ6P
P56P∈RS

𝑦P/	, (7)

where dil is the Euclidean Distance between patterns i and
l. The KNNI approach comprises three steps: take only the
rows without missing data and use this subset to select the
nearest neighbours; choose a distance metric and compute
the nearest neighbour between each pattern with missing
data and the complete subset (Equation 7); impute the data,
using the mean or the mode of the chosen neighbours. The
only parameter to be selected is the number of neighbours
K and the authors in [22] argue that the method is fairly
insensitive to its choice. In all the simulations carried out
in this work, we used a value of K = 10. The K-Nearest
Neighbours has some advantages: the method can predict
both, categorical variables (the most frequent value among
the KNN) and continuous variables (the average among the
KNN); it has easy interpretability and straightforward
implementation; furthermore, it only imputes values in the
original range of values of the complete set. Disadvantages
of the approach are the low scalability to big datasets,
(O(N2) comparisons needed) and the robustness of the
results is questionable (e.g., compared to ensemble
methods).

3.3 Linear Regression Imputation

In the Linear Regression Imputation (LRI) [7], the
variables to be imputed (which are assumed to be in the
continuous space) are considered as the dependent variable
in a multivariate regression model. The model is fitted to
the complete subset and comprises three steps: take only
the datasets rows without missing data and use this subset
to fit the model using:

𝑦1/ = 𝑤/𝑥1	, (8)

where wk is the regression weight vector for feature k, and
xi the feature vector of item i (note that there is no
parameter sharing between the features, so the optimization
problem is separable in k); impute each missing value with
the fitted model; and repeat steps one and two to generate
multiple imputations. Using the linear regression approach,
a continuous variable may have an imputed value outside
the range of observed values. This problem can be
addressed by drawing another value every time this occurs.
The main advantages of the LRI are the ready
implementation of regression models in Spark and the fact
that it can easily scale with the size of the dataset. On the
other hand, the main drawback of the method is the need of
a different model for each feature containing missing
values (only one dependent variable can be fit at a time).

3.4 Neural Networks Imputation

With this model, the missing values are imputed fitting a
Neural Network trained on the complete dataset. In

particular, the training phase aims to minimize the
weighted squared loss (Equation (6)) across all the features
containing missing values. The normalization term SSTk
allows the model to give the same importance to each
feature during the gradient calculation. At imputation time,
the missing values are estimated with:

where fk(xi) is the k output in the last layer of the network
and 𝑆𝑆𝑇/	 is the de-normalization term used to bring the
output to the initial input scale. The training of this model
is distributed on Spark as discussed in Section 2.2, allowing
the imputation of large datasets of multiple features with a
single model.

6. Experimentation and Results

The empirical experiment on the Recommender System
OTA dataset is carried to test the imputation accuracy and
time feasibility of the proposed technique. Before the
imputation, the data is split into a training set (70%) and a
test set (30%).
The investigated NN topology includes two hidden layers
(n-n-n-k), with n being the number of inputs (n = 657) and
k the number of outputs (k = 57). After each hidden layer,
a ReLU activation function is used to transform the data (a
ReLU is also applied in the output layer as all the missing
values belong to features in ℝVW. The training set is further
divided into 80% for training and 20% for validation, and
Equation (6) is used to evaluate the learning performance.
The stopping condition includes 2000 training epochs,
gradient reaching value less than 1.0e-06, or 6 consequent
failed validation checks, whichever occurs first. Figure 3
shows the R2 metric across the 57 considered features. As
it can be seen, the D-NNI outperforms the other techniques
(larger R2) for many of the imputed features. The range of
R2 for the D-NNI spans from 0.07 to 0.95 with a median of
0.56. The second best method (LRI) has its lowest
imputation performance at 0 (same as all the other
compared techniques), the best at 0.87 and a median R2 of
0.38. Following are the Mean Imputation, KNN-I and
Median Imputation with 0.27, 0.26 and 0.18 median R2
respectively. It is also worth to notice that the Mean and
Median Imputation techniques have a few outliers reaching
an R2 above 0.80, this is happening with features skewed
toward one value (low variance in the values), hence closer
to the mean (median) of the imputed one.

Figure 3 Boxplot for the R2 measure on the 57 imputed

variables.

The R2 for each missing feature is also presented in Figure
4. As it can be seen, the prediction accuracy of the D-NNI
is always greater of those provided by the LRI and KNNI.
For the Mean (Median) Imputation, the D-NNI is better in
51 out of 57 cases, while still being comparable in the six
remaining features (pct_gt_ly_amer_posa_h,
pct_gt_ly_emea_posa_h, etc. (see Figure 4)). Figure 5
shows one of the best (gt_ly_h) and worst
(pct_gt_stay_month_4_h) imputed features for the D-NNI.
It illustrates the NN ability to predict with high accuracy
continuous features (Figure 5a), while struggling with the
zero inflated ones (Figure 5b) (but still showing better
imputation accuracy compared to the other models).
Furthermore, in Table 6 the running times over 10 runs for
the five imputation techniques are displayed when using
the following Amazon Web Service cloud cluster
configuration: Master (r4.xlarge, 30gb, 4 cores) and 8
Workers (15gb, 8 cores). The average and standard
deviation in minutes are reported, showing the D-NNI as
the slowest method to impute, with a large variance across
different runs (depending on the convergence speed for the
training phase). The second slowest method is the LRI.
Here, the 57 features containing missing values are
independently fitted, reason for the achieved imputation
speed. It would be expected a linear decrease in speed using
up to 57 workers (where each node of the cluster is fitting
a different feature). The fastest imputation models
appeared to be the Mean (Median) Imputation, where the
prediction only finds the average (median) of each missing
feature. The KNN-I speed is not reported as the imputation
was not possible with the considered cluster configuration
(not enough memory to fit the N2 pair matrix). When
increasing the cluster size to 20 nodes, the KNN-I
imputation took 40 minutes, with a standard deviation of 8
minutes, mainly due to communication latency among the
workers.

Table 6 Average and std run time (in minutes) over 10 runs

 D-NNI LRI KNNI Mean
Imputation

Median
Imputation

Avg
(Std)

24
(±10)

12
(±5)

-
-

< 1
(± 0)

< 1
(± 0)

To measure the D-NNI sensitivity to the batch size and the
number of workers, we consider a grid of values from 10
to 70 for the first parameter, and 2 to 8 for the second one.
For each training run we compute the ratio given with
Equation 6. This represents the achieved speedup, relative
to training on a single node (sequential NN with SGD). In
Table 7 we report the imputation speedup for the D-NNI
model under 21 different settings. Table 7 exhibits several
trends, with the top row representing the case of two

●

●

●

●

●
●

●

●●

●

●
●

●

●●

0.00

0.25

0.50

0.75

1.00

D−N
NI LRI

KNN−I

Market Mean

Market Median

R
2

 𝑦1/ = 𝑓/ 𝑥1 	 𝑆𝑆𝑇/	, (8)

machines. As it can be seen, the speedup decreases when
incrementing the batch size, which is due to the training
taking the largest part of the total computational time,
while the communication between nodes is negligible. The
same trend still holds in the case of 4 machines (row 2). In
the 3rd row, the trend shows reduction of the speedup up to
the batch size of 50%. The subsequent increase of the ratio
(for 60% and 70%) could be due to the time being evenly
split between training and communication, and from
randomness due to fluctuation in the convergence of the
optimization process. Another interesting trend can be
observed when inspecting the table by columns. Is true
almost for all cases that the use of 4 nodes gives the best
speedup over 2 and 8.
This could be explained by the quantity of data used for
training. When a certain threshold for the number of
workers is passed, the overhead for communication and
synchronization can become larger than the actual
processing time. This is enforced by the fact that the trend
is less accentuated when moving toward bigger batches.
For 40% and 50%, the speedup for 4 and 8 nodes is almost
identical, while for 8 nodes the speedup is higher when
using more than 50% of data in each batch.

Table 7 Speedup ratio of the NN compared to the sequential
model, for number of samples in batch (10% to 70%) against

number of workers (2 to 8)

 10 20 30 40 50 60 70
2 2.89 2.40 1.69 1.45 1.27 1.21 1.12
4 3.85 3.62 2.13 2.21 1.97 1.93 1.68
8 3.35 2.95 1.96 2.12 1.71 3.06 2.63

7. Conclusion

The missing data problem in big data context is
investigated and a novel imputation approach using
Distributed Neural Networks is proposed. The D-NNI
framework is implemented as an additional stage in the
Spark pipeline, ensuring that the missing data are imputed
before applying the machine learning techniques. The D-
NNI is tested on a real world Recommender System dataset
composed of 400 thousand samples and more than 600
features (of which 57 historical characteristics containing
missing values). The approach showed improved
performance (R2 metric over the 57 missing features) when
compared to univariate benchmarks (Mean and Median

Figure 4 R2 metric for the 57 missing features. The prediction accuracy of each feature is independently showed for the five techniques.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

0.00

0.25

0.50

0.75

1.00

hi
st

_p
ric

e_
ly

_s
ns

_h

hi
st

_p
ric

e_
st

d_
ly

_s
ns

_h

hi
st

_p
ric

e_
ly

_n
os

ns
_h

hi
st

_p
ric

e_
st

d_
ly

_n
os

ns
_h

hi
st

_p
ric

e_
ly

_h

hi
st

_p
ric

e_
st

d_
ly

_h

hi
st

_p
ric

e_
co

m
ps

et
_l

y_
sn

s_
h

hi
st

_p
ric

e_
st

d_
co

m
ps

et
_l

y_
sn

s_
h

hi
st

_p
ric

e_
co

m
ps

et
_l

y_
no

sn
s_

h

hi
st

_p
ric

e_
st

d_
co

m
ps

et
_l

y_
no

sn
s_

h

hi
st

_p
ric

e_
co

m
ps

et
_l

y_
h

hi
st

_p
ric

e_
st

d_
co

m
ps

et
_l

y_
h

hi
st

_p
ric

e_
lm

_s
ns

_h

hi
st

_p
ric

e_
st

d_
lm

_s
ns

_h

hi
st

_p
ric

e_
lm

_n
os

ns
_h

hi
st

_p
ric

e_
st

d_
lm

_n
os

ns
_h

hi
st

_p
ric

e_
lm

_h

hi
st

_p
ric

e_
st

d_
lm

_h

hi
st

_p
ric

e_
co

m
ps

et
_l

m
_s

ns
_h

hi
st

_p
ric

e_
st

d_
co

m
ps

et
_l

m
_s

ns
_h

hi
st

_p
ric

e_
co

m
ps

et
_l

m
_n

os
ns

_h

hi
st

_p
ric

e_
st

d_
co

m
ps

et
_l

m
_n

os
ns

_h

hi
st

_p
ric

e_
co

m
ps

et
_l

m
_h

hi
st

_p
ric

e_
st

d_
co

m
ps

et
_l

m
_h

hi
st

_m
ar

gi
n_

ly
_h

hi
st

_m
ar

gi
n_

lm
_h

gt
_l

y_
h

gt
_l

q_
h

gt
_l

m
_h

gt
_l

w
_h

nt
_l

y_
h

nt
_l

q_
h

nt
_l

m
_h

nt
_l

w
_h

pc
t_

gt
_l

y_
am

er
_p

os
a_

h

pc
t_

gt
_l

y_
em

ea
_p

os
a_

h

pc
t_

gt
_l

y_
ap

ac
_p

os
a_

h

pc
t_

gt
_l

y_
bw

1_
h

pc
t_

gt
_l

y_
bw

2_
h

pc
t_

gt
_l

y_
lo

s1
_h

pc
t_

gt
_l

y_
lo

s2
_h

pc
t_

gt
_l

y_
ch

ild
_h

pc
t_

gt
_l

y_
do

m
es

tic
_h

pc
t_

gt
_l

y_
in

te
rc

_h

pc
t_

gt
_l

y_
in

tra
c_

h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_1
_h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_2
_h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_3
_h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_4
_h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_5
_h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_6
_h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_7
_h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_8
_h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_9
_h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_1
0_

h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_1
1_

h

pc
t_

gt
_l

y_
st

ay
_m

on
th

_1
2_

h

Feature

R
2

Technique
● D−NNI

LRI
KNN−I
Market Mean
Market Median

(a) 																																																																																																																							(b)	

Figure	5	Predicted	(x-axis)	and	observed	(y-axis)	values	for	the	D-NNI.	Figure	5a	(left)	shows	the	historical	yearly	gross	transactions	of	
each	property,	while	Figure	5b	(right)	depicts	the	yearly	percentage	transactions	for	one	month	(April).

imputation by Location) and state-of-the-art techniques
(KNN-I and LRI). Furthermore, a speedup analysis has
also been carried to test the D-NNI scalability when using
10% to 70% of the data as mini-batches for the training
phase, over 2 to 8 machines when compared to the
sequential Neural Networks implementation. The reported
results indicate that the D-NNI method is a viable option
for the imputation of missing data when the considered
datasets do not fit in the memory of one machine.

References
	

[1] C. K. Enders, Applied missing data analysis,
Guidford: Guidford Press, 2010.

[2] P. Schmitt, J. Mandel and M. Guedj, “A
comparison of six methods for missing data
imputation,” Journal of Biometrics &
Biostatistics, vol. 6, no. 1, pp. 1-6, 2015.

[3] A. Petrozziello and I. Jordanov, “Column-wise
Guided Data Imputation,” in 17th International
Conference on Computational Science, Zurich,
2017.

[4] J. L. Schafer and J. W. Graham, “Missing data:
our view of the state of the art.,” Psychological
methods, vol. 7, no. 2, p. 147, 2002.

[5] J. W. Graham, “Missing data analysis: Making
it work in the real world,” Annual review of
psychology, vol. 60, pp. 549-576, 2009.

[6] C. M. Musil, C. B. Warner, Y. P. K. and S. L.
Jones, “A comparison of imputation techniques
for handling missing data,” Western Journal of
Nursing Research, vol. 24, no. 7, pp. 815-829,
2002.

[7] C. Anagnostopoulos and P. Triantafillou,
“Scaling out big data missing value imputations:
pythia vs. godzilla,” in Proceedings of the 20th
ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014.

[8] Y. Sun, X. Wang and X. Tang, “Hybrid deep
learning for face verification,” in Computer
Vision (ICCV), IEEE International Conference
on, 2013.

[9] L. e. a. Deng, “Recent advances in deep
learning for speech research at microsoft,” in
Acoustics, Speech and Signal Processing
(ICASSP), IEEE International Conference on,
2013.

[10] L. Bottou, “Large-scale machine learning with
stochastic gradient descent,” in Proceedings of
COMPSTAT'2010. Physica-Verlag HD, 2010.

[11] e. a. Chilimbi, “Building an efficient and
scalable deep learning training system,” in 11th
USENIX Symposium on Operating Systems
Design and Implementation, 2014.

[12] L. e. a. Mu, “Scaling distributed machine
learning with the parameter server,” in 11th

USENIX Symposium on Operating Systems
Design and Implementation, 2014.

[13] C. Cheng-Tao, “Map-reduce for machine
learning on multicore,” Advances in neural
information processing systems, 2007.

[14] T. White, Hadoop: The definitive guide,
O'Reilly Media, Inc., 2012.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S.
Shenker and I. Stoica, “Spark: cluster computing
with working sets,” HotCloud, vol. 10, pp. 1-7,
2010.

[16] A. Petrozziello and I. Jordanov, “Data
Analytics for Online Travelling
Recommendation System: A Care Study,” in
MIC 2017, Vienna, 2017.

[17] M. Odersky, L. Spoon and B. Venners,
Programming in scala, Artima Inc, 2008.

[18] M. Xiangrui, “Mllib: Machine learning in
apache spark,” The Journal of Machine Learning
Research , vol. 17, no. 1, pp. 1235-1241, 2016.

[19] “Neuron,” 28 11 2017. [Online]. Available:
https://github.com/bobye/neuron. [Accessed 28
11 2017].

[20] P. Moritz, R. Nishihara, I. Stoica and M.
Jordan, “Sparknet: Training deep networks in
spark,” in arXiv preprint arXiv:1511.06051,
2016.

[21] G. Zervas, D. Proserpio and J. Byers, “Therise
of the sharing economy: Estimating the impact of
airbnb on the hotel industry,” in Boston U. School
of Management Research Paper, Boston, 2016.

[22] O. Troyanskaya, “Missing value estimation
methods for dna microarrays,” Bioinformatics,
vol. 17, no. 6, p. 520–525, 2001.

[23] C. Robusto, “The cosine-haversine formula,”
The American Mathematical Monthly, vol. 64,
no. 1, pp. 38-40, 1957.

[24] C. Willmott and K. Matsuura, “Advantages of
the mean absolute error (MAE) over the root
mean square error (RMSE) in assessing average
model performance,” Climate research, vol. 30,
no. 1, pp. 79-82, 2005.

[25] T. Chai and R. Draxler, “Root mean square
error (RMSE) or mean absolute error (MAE)?--
Arguments against avoiding RMSE in the
literature,” Geoscientific Model Development,
vol. 7, no. 3, pp. 1247-1250, 2014.

[26] N. Draper and H. Smith, Applied Regression
Analysis., Wiley-Interscience, 1998, pp. 505--
553.

[27] J. Hennessy and D. Patterson, Computer
architecture: a quantitative approach, Waltham:
Elsevier, 2011.

