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ABSTRACT 
In this paper we investigate the use of Distributed Neural 
Networks for the imputation of missing values in Big Data 
context. The presented framework for data imputation is 
implemented in Spark, allowing easy imputation as an 
additional step to the data pre-processing pipeline. The 
Distributed Neural Networks model is using Mini-batch 
Stochastic Gradient Descent, scaling well with the cluster 
size and minimizing the communication among the 
workers. The model is tested on a real-world 
Recommender Systems dataset, where the missing data is 
generally a problem for new items, as the systems ranking 
is usually biased towards the popular items. The model is 
compared with univariate (Mean and Median Imputation) 
and multivariate (K-Nearest Neighbours and Linear 
Regression) imputation techniques, and its performance is 
validated using prediction accuracy and speed. 
Furthermore, we evaluate the speedup compared to the 
sequential implementation of Neural Networks with 
Stochastic Gradient Descent. 
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1. Introduction 
A necessary step to consider before applying any machine 
learning technique is to deal with eventual missing data in 
the used dataset. Mechanisms of missing data belong to 
three categories [1] [2]: missing at random (MAR) the 
missingness may depend on observed data but not on 
unobserved data (in other words, the cause of missingness 
is considered). Missing completely at random (MCAR) — 
a special case of MAR, where the probability that an 
observation is missing is unrelated to its value or to the 
value of any other variable. Missing not at random 
(MNAR), where the missingness depends on unobserved 
data. The last group usually yields biased parameter 
estimates, while MCAR and MAR analyses yield unbiased 
ones (at the same time the main MCAR consequence is a 
loss of statistical power). Ideally, dealing with missingness 
requires analysis strategy that leads to least biased 
estimation, without losing statistical power. The problem is 
the contradictory nature of those criteria: using the 
information from the partial data in missing data samples 
(keeping the statistical power), while substituting the 
missing data samples with estimates, inevitably brings 
biases. Many techniques have been explored and exploited 

in the last few years [2] [3] and can be divided into two 
main categories [4] [5]: deletion methods and model-based 
methods. The former includes pair-wise and list-wise 
deletion (where the patterns with missing values are simply 
removed, or where, in presence of missing values, the 
pattern is not dropped, and its other values are still used 
during the analysis), the latter is divided into single 
imputation (not considering the correlation between the 
missing value and the other variables in the dataset, and 
imputing the data using only information of the same 
attribute) and multivariate imputation (where the 
correlation among variables in taken into account during 
the imputation). 
When Big Data is considered, the problem of the missing 
data imputation is still of primary importance for the 
successful implementation of machine learning techniques 
(e.g., recommendation tasks where millions of users and 
thousands of items are involved). Usually, the probability 
of having missing data increases with the number of 
features in the dataset and with the number of samples, 
making the imputation task in big data context extremely 
important. However, if the missing entries are few 
compared to the scale of the dataset, a deletion method is 
applicable without losing statistical strength. On the other 
hand, if the number of missing values grows with the size 
of the dataset the imputation is necessary to preserve, or 
even increase, the statistical power of the data (or in general 
to not lose too many samples during the pre-processing 
stage). Unfortunately, all the imputation techniques 
proposed in literature [2] [3] [6] require the whole dataset 
to be provided for the model at imputation time, which 
means that adequate memory allocation is needed, making 
the task unfeasible for datasets composed of hundreds of 
features and millions of samples. Not many methods have 
been proposed to cope with the missing data problem in the 
big data field [7] due to the inherent complexity of the task 
(both related to time and memory constraints). 
Neural Networks (NN) are state of the art machine learning 
(ML) approach for several different domains with recent 
advances in image processing [8], pattern and speech 
recognition [9], that involve fitting of large architectures 
(with thousands of weights) to large datasets (several 
gigabytes to few terabytes). Given the scale of these 
machine learning problems, training can take up to days or 
even weeks on a single machine using the commonly 
applied deterministic optimization techniques (e.g., 
stochastic gradient descent (SGD)) [10]. For this reason, 
research focussed on the distribution of machine learning 



algorithms across multiple machines. Different attempts 
have been made to speed up the training of NN using 
asynchronous jobs [11]. In the parameter server model 
[12], one master holds the latest model parameters in 
memory, serving the workers nodes on request. The nodes 
compute the gradient on a mini batch drawn from the local 
hard drive. The gradients are then shipped back to the 
server, which updates the model parameters. With the 
introduction of the MapReduce paradigm [13], different 
frameworks emerged to leverage resources of a cluster 
(e.g., Hadoop [14] and Spark [15]). These frameworks 
simplified the implementation of large-scale analytics and 
machine learning tasks (e.g., Apache Mahout [14]). In this 
paper, we propose a Distributed Neural Network 
Imputation (D-NNI) framework (Figure 1), leveraging the 
idea of mini-batch training in a distributed fashion over 
Spark to reduce training time, while making at the same 
time the imputation of new values possible even for larger 
datasets. The proposed imputation approach is tested on a 
real-world dataset composed of 400 thousand samples [16], 
and 645 features (of which 57 include missing values). The 
remainder of the paper is organized as follow. In Section 2 
the proposed framework for Missing Data Imputation with 
Distributed Neural Networks is described. In Section 3 we 
introduce the missing data problem for properties 
recommendation in Online Travel Agencies, while the 
dataset and the imputation techniques are reported in 
Section 4 and Section 5 respectively. Finally, the results of 
the experimentation are analysed in Section 6 and the 
conclusion is given in Section 7. 
 
2. Distributed Neural Networks on Spark 

Apache Spark [15] is an open source framework for 
distributed computing (driver-workers paradigm) written 
in Scala [17]. It is composed of a main core package and 
four components: SparkSQL, ML Spark, SparkStreaming 
and GraphX. The main advantage of Spark is that, 
differently from the Map-Reduce paradigm it is not built on 
acyclic data flow model. The main data structure is the 
‘resilient distributed dataset’ (RDD) which is distributed 
and stored in the fastest part of the memory (e.g., RAM), 

and can be easily accessed multiple times when needed for 
ML iterative algorithms. ML Spark is a distributed machine 
learning framework built as additional module on top of 
Spark, considered to be up to 100 times faster than the disk-
based implementations of Mahout [14]. Many pre-
processing operations, statistical procedures and ML 
algorithms are implemented in the package and can easily 
be used through the Spark pipelines [18].  

Table 1 Neural Network Trait 

trait NN { 
    def initNetwork(nInputs:Int, nOutput:Int):Unit 
    def setWeights(weights: DenseVector[Double]) 
    def apply(denseVector: DenseVector[Double],     
          memKey:String)  
    def apply(denseMatrix: DenseMatrix[Double],  
          memKey:String) 
    def backpropagate(loss:DenseVector[Double],   
          memKey:String) 
    def backpropagate(loss: DenseMatrix[Double],  
          memKey:String) 
    def getGradient() 
    def getWeights() 
    def getNumberOfWeights() 
    def getLastLayerWsize() 
} 

 

2.1 Implementation  
The implementation of the imputation stage through 
distributed neural networks (D-NNI) builds on Apache 
Spark [15] and the Neuron library [19] (a lightweight 
Neural Network library written in Scala providing all the 
building blocks (e.g., layers, optimizers, back-propagation, 
etc.), to create our own distributed version (Table 1shows 
the Neural Network Scala interface [19]). By building on 
top of Spark, we utilise the advantages of modern batch 
computational frameworks. These include the high-
throughput loading and pre-processing of data and the 
ability to keep data in memory between operations. 
Furthermore, the implementation of the D-NNI as a 
pipeline stage [18] allows the imputation to be easily 
included in the pre-processing of any dataset. Table 2 and 
Table 3 show code snippets of how the imputation stage is 

Figure	1	Distributed	Neural	Network	architecture	in	Spark	(Section	2.2).		



created. In particular, Table 2 presents how the layout of 
the network is defined (using a sequence of layers, with the 
initial one representing the input, and the last one the output 
(which can be as large as the number of imputed features)), 
while Table 3 demonstrates the creation of a Spark pipeline 
imputation stage. The NeuralNetworkImputationStage 
object exposes several methods: to set the input columns to 
be used during the imputation (i.e., the features used during 
the learning phase), the target columns (the ones containing 
missing values),  the predicted columns (the stage returns a 
new dataframe containing additional columns with the 
imputed values), and the additional parameters used during 
the imputation procedure (the NN layout as defined in 
Table 2, the optimizer hyper-parameters, the weights 
initialization procedure, the loss function to be optimized 
during the learning, etc). 

Table 2 Example of network specification for D-NNI 

networkLayout: Seq[layerConf] =  Seq( 
    layerConf(“linear”, 20, 10), 
    layerConf(“Relu”, 10, 10), 
    layerConf(“linear”, 10, 5), 
    layerConf(“Relu”, 5, 5), 
    layerConf(“linear”, 5, 1), 
    layerConf(“sigmoid”, 1, 1) 
) 

 

Table 3 Create a Missing Imputation Stage in a Spark pipeline, 
the “fit” method will train the model to predict the missing 

values, once the model is trained (i.e., imputationModel object), 
the missing values can be imputed using the “transform” 

method of the model. 

val imputationModel = new NeuralNetworkImputationStage() 
    .setFeatureColumnName(“features”) 
    .setTargetColumnName(“missingFeatures”) 
    ,setPredictColumnName(“imputedFeatures”) 
    .setOptimizerParameters(optimizerSGD(10, 5, 0.0001) 
    .setNetworkLayout(networkLayout) 
    .trainWithMatrices(true) 
    .setWeightInitializationType(“heUniform”) 
    .useValidation(true) 
    .setValidationPerc(0.10) 
    setLossFunction(“l2distance”) 
    .fit(data) 
val newData = imputationModel.transform(data) 

2.2 Distributed Neural Networks 
In this work we use a data-parallelization scheme with 
synchronization and a central coordinator, labelled naïve 
parallelization by [20]. In every iteration, each worker node 
c in our cluster C computes a local gradient 𝑔" for a batch 
of data 𝑏", then these vectors are (tree-) aggregated, 

 
𝑔 =

1
𝐶

𝑔"(𝑏")
"

 (1) 

and sent back to the master which performs the SGD update 
step and broadcasts the new weights (W) to all 𝑐	 ∈ 𝐶 
(Figure 1). In the absence of network overhead and 
aggregation cost this setup scales linearly with the number 
of worker nodes. Under more realistic conditions, the 

optimal number of nodes will depend on the size of 𝑏, and 
the network overhead. 

3. Missing Data in Online Travel Industry: A 
Case Study 

As in all online services where user choices, items, and 
decisions are involved, there is a necessity of a 
Recommender System (RS). Online travel agencies 
(OTAs) provide the main service for booking hotels, 
apartments, and packages including many options, an 
adequate recommendation is what the user can mostly 
benefit from the system. For a RS based on users past 
experience (Collaborative Filtering (CF)), all users’ 
information and interactions with the catalogue are 
recorded in a user-item matrix in order to learn behaviours 
and popularity trends when giving new recommendations. 
Since travel RS allows the user to navigate the catalogue 
and book hotels without being logged in the system, the use 
of a CF approach is not feasible, because the user-item 
matrix is way too sparse (and sometimes even the user 
information is not available at all). For this reason, a 
Content-Based Filtering (CBF) approach is considered in 
this work (where the recommendation is given on items 
similarity), focusing on one of its main problems: missing 
features. An important event in the market of holidays 
lodging is represented by the explosive popularity of 
private renting (Vacation Rentals (VR)) gained in the past 
few years [21]. and more than 400K records are expected 
to be added in the next year (Figure 2 shows the properties 
growth in the catalogue and related growth of missing data 
the past 15 years). The primary problem with this massive 
influx of new properties (1/4 of the total properties were 
added to the catalogue in 2017) is the lack of related 
historic data which results in their unfair system ranking. 
New VR (e.g., apartments, condos, apart-hotels, etc.) have 
been introduced in the OTAs (~80K records) in the 2017, 
The proposed D-NNI is tested on the imputation of missing 
values on the OTAs problem and the results are compared 
with univariate imputation techniques (Mean and Median 
Imputation by location) and multivariate techniques 
implemented in Spark (e.g., K-Nearest Neighbours 
Imputation [22] and Linear Regression Imputation [7]). 
Performance results for the data imputation task and 
speedup are reported in Section 6. 
. 
4. Datasets 
The collected data is from four sources: 
• Amenities: includes the characteristics of all the 

properties (e.g., Wi-Fi, pool, TV, etc.); 
• Properties: comprises all the relevant information in 

the system (e.g., property ID, name, latitude, longitude, 
etc.); 

• Destinations: records of all points of interest (e.g., 
cities, landmarks, airports, train and metro stations, 
etc.); 

• Displayed Prices: stores the historical prices shown on 
the online travel agency website. 



The Amenities dataset is divided into four categories: 
Dining (e.g., restaurants, bar, etc.), Room (e.g., TV, Wi-
Fi, etc.), Property (e.g., reception, elevator, etc.) and 
Recreation (e.g., spa, pool, etc.) amenities. The cleaning 
of this dataset is done in two steps: filtering out all the 
amenities that are not provided by the property and those 
requiring a fee (e.g., “No Free Parking”, “No Free 
Water”, “No Free Wi-Fi”); and secondly, for each 
category, removing the most frequently listed amenities 
(e.g., “Free Wi-Fi” appears in 190K out of 290K 
properties) and the least frequently listed ones (roughly 
getting rid of the top 2% and bottom 15% of the list). The 
obtained cleansed subset contains around 5 million 
records (16 amenities on average for each property) and 
500 unique amenities. From the Properties dataset, only 
the catalogued active ones are considered (~360K) and 
referred as a active dataset. Destinations table contains 
all points of interest belonging to the following categories 
landmark, airport, metro station or train station. This set 
is cross-joined with the active properties in order to 
calculate the distances between each property and 

destination (Haversine distance [23]). The resultant set 
comprises 200 million records of property-destination 
pairs. The historical Displayed prices on the website are 
calculated using three different time spans: a 1-day; a 3-
day; and a 7-day average. The four mentioned datasets 
(e.g., Amenities, Destinations, Properties and Displayed 
Prices) are joined together with the property ID to have 
all needed information for a specific property. A subset 
of features of this final dataset is showed in Table 4, while 
a summary of the features contained in each dataset is 
given in Table 5. 
 

Table 5 Summary of the features used in the OTAs dataset 

Feature Type # of Features 
Amenities 500 
Properties 20 
Destinations 11 
Displayed Prices 57 

q	

4.2 Evaluation and Validation 

A variety of metrics for comparing and evaluating data 
imputation and predictive models can be found in the 
literature [9]. Among them, Root Mean Squared Error 
(RMSE) and Mean Absolute Error (MAE) are the most 
popular [24]. The MAE is argued to be more accurate and 
informative than the RMSE [24], successively refuted by 
[25], where it is stated that the two measures picture 
different aspects of the error. One major problem of these 
metrics is that both RMSE and MAE are scale dependent 
and therefore of hard comparability across different 
features. For this reason, we consider the R2 coefficient of 
determination instead [26] (here described as function of 
the Sum of Squared Explained (SSE) and Sum of Squared 
Total (SST)): 
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ID nDays 
in 

Catalog 

Latit
ude 

Longitu
de 

Am.
1 

.. 

Am. 
500 

# 
land
mar
ks 

Dist 
Airport 

Avg 
Price 
last 
3 

days 

#bookings 
last 180 

days 

#bookings 
last 365 

days 

Pct 
bookings 

month  
1 

140759 5730 37.78 -122.40 0  0 92 19.27 1.47 511 2254 0.05 
431602 1484 -2.42 -54.73 0  0 1 5.29 0.94 0 84 0 

17905696 133 21.73 -79.99 0  1 1 >500 0 - - - 
189642 5730 32.91 -97.01 1  1 1 3.36 0.65 889 4250 0.09 

679498048 28 41.38 2.18 0  0 137 0.24 1.43 - - - 
637314944 111 27.79 -82.79 1  0 0 16.03 1.39 - - - 
636663872 112 47.80 7.67 1  1 2 24.87 2.91 30 - - 

Table 4 Sample of the dataset containing the features used for the properties recommendation. Missing values (values that are not 
available for a short history) are denoted with a ‘-‘. 
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Figure 2 Log growth of the properties in the catalogue (black 
line) and log growth of missing data (red line) 



 
R2 is closely related to RMSE but has an additional 
normalization term which maps it to the (0,1) interval. 
This ensures comparability across all k elements of the 
label vector. Assuming that we weight prediction errors 
equally across all k variables, we can define our objective 
as finding the maximum of 𝑅2// .  
Notice that this is equivalent to minimizing the following 
weighted squared loss: 

 
 

1
𝑆𝑆𝑇/

	 𝑦1/ − 	𝑦1/
3

1

.
/
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Through this paper the predicted missing values for pattern 
i and feature k are referred as 𝑦1/ , the known values as 𝑦1/ , 
and N is the sample size. 
 
Speedup [27] is the main metric for measuring distributed 
algorithms scaling, and it is the ratio between the 
computational speed of the sequential and the distributed 
counterpart: 

 
Speedup N,	P = 	

Tseq 𝑁, 1
Tpar N,	P

 (6) 

where N is the size, P is the number of machines and the 
denominator represents the running time of the parallel 
version. For validation purposes, the dataset is split into 
training and test sets (70% - 30%) and the imputation is 
performed 10 times to cope with the randomness. 
Furthermore, the ML Spark pipelines [8] are used to ensure 
correctness and replicability of the experiments. 

5. Missing Data Imputation Techniques 
5.1 Mean and Median Imputation by Location 

The most common techniques used as baselines for 
comparison and analysis of predictive models are Mean 
and Median imputation [6]. The Mean (Median) 
substitution replaces the missing values with the global 
mean (median) of the same attribute of the set without 
missing values. Instead of the global mean (median), in this 
work we adopt the Mean and Median Imputation by 
Location. This measure should provide more accurate 
results as geographic information is implicitly used 
(property in the same region are more likely to share prices 
and other historical similarities).  

 
 

𝑦1/ = 	𝑤/𝑚1	, (6) 

where wk represents the vector of location averages and mi 
- the one-hot encoded representation of the location ID. 
This baseline is of fast and straightforward 
implementation, able to easily scale with the size of the 
considered dataset. On the other hand, these univariate 
imputation techniques are generally rejected by the 
scientific community due to their weak statistical power. 

3.2 K-NN Imputation 
In the K-Nearest Neighbours Imputation (KNNI), each 
missing observation i is imputed with the average over its 

most similar patterns. The set of neighbours Li is found by 
minimizing the Euclidean Distance between the pattern i 
and the complete subset [22]:  

 
 

𝑦1/ = 	
𝑑1PQ6

𝑑1PQ6P
P56P∈RS

𝑦P/	, (7) 

 
where dil is the Euclidean Distance between patterns i and 
l. The KNNI approach comprises three steps: take only the 
rows without missing data and use this subset to select the 
nearest neighbours; choose a distance metric and compute 
the nearest neighbour between each pattern with missing 
data and the complete subset (Equation 7); impute the data, 
using the mean or the mode of the chosen neighbours. The 
only parameter to be selected is the number of neighbours 
K and the authors in [22] argue that the method is fairly 
insensitive to its choice. In all the simulations carried out 
in this work, we used a value of K = 10. The K-Nearest 
Neighbours has some advantages: the method can predict 
both, categorical variables (the most frequent value among 
the KNN) and continuous variables (the average among the 
KNN); it has easy interpretability and straightforward 
implementation; furthermore, it only imputes values in the 
original range of values of the complete set. Disadvantages 
of the approach are the low scalability to big datasets, 
(O(N2) comparisons needed) and the robustness of the 
results is questionable (e.g., compared to ensemble 
methods). 

3.3 Linear Regression Imputation 

In the Linear Regression Imputation (LRI) [7], the 
variables to be imputed (which are assumed to be in the 
continuous space) are considered as the dependent variable 
in a multivariate regression model. The model is fitted to 
the complete subset and comprises three steps: take only 
the datasets rows without missing data and use this subset 
to fit the model using: 

 
 

𝑦1/ = 𝑤/𝑥1	, (8) 

where wk is the regression weight vector for feature k, and 
xi the feature vector of item i (note that there is no 
parameter sharing between the features, so the optimization 
problem is separable in k); impute each missing value with 
the fitted model; and repeat steps one and two to generate 
multiple imputations. Using the linear regression approach, 
a continuous variable may have an imputed value outside 
the range of observed values. This problem can be 
addressed by drawing another value every time this occurs. 
The main advantages of the LRI are the ready 
implementation of regression models in Spark and the fact 
that it can easily scale with the size of the dataset. On the 
other hand, the main drawback of the method is the need of 
a different model for each feature containing missing 
values (only one dependent variable can be fit at a time). 

3.4 Neural Networks Imputation 

With this model, the missing values are imputed fitting a 
Neural Network trained on the complete dataset. In 



particular, the training phase aims to minimize the 
weighted squared loss (Equation (6)) across all the features 
containing missing values. The normalization term SSTk 
allows the model to give the same importance to each 
feature during the gradient calculation. At imputation time, 
the missing values are estimated with: 

where fk(xi) is the k output in the last layer of the network 
and 𝑆𝑆𝑇/	 is the de-normalization term used to bring the 
output to the initial input scale. The training of this model 
is distributed on Spark as discussed in Section 2.2, allowing 
the imputation of large datasets of multiple features with a 
single model. 

6. Experimentation and Results 

The empirical experiment on the Recommender System 
OTA dataset is carried to test the imputation accuracy and 
time feasibility of the proposed technique. Before the 
imputation, the data is split into a training set (70%) and a 
test set (30%). 
The investigated NN topology includes two hidden layers 
(n-n-n-k), with n being the number of inputs (n = 657) and 
k the number of outputs (k = 57). After each hidden layer, 
a ReLU activation function is used to transform the data (a 
ReLU is also applied in the output layer as all the missing 
values belong to features in ℝVW. The training set is further 
divided into 80% for training and 20% for validation, and 
Equation (6) is used to evaluate the learning performance. 
The stopping condition includes 2000 training epochs, 
gradient reaching value less than 1.0e-06, or 6 consequent 
failed validation checks, whichever occurs first. Figure 3 
shows the R2 metric across the 57 considered features. As 
it can be seen, the D-NNI outperforms the other techniques 
(larger R2) for many of the imputed features. The range of 
R2 for the D-NNI spans from 0.07 to 0.95 with a median of 
0.56. The second best method (LRI) has its lowest 
imputation performance at 0 (same as all the other 
compared techniques), the best at 0.87 and a median R2 of 
0.38. Following are the Mean Imputation, KNN-I and 
Median Imputation with 0.27, 0.26 and 0.18 median R2 
respectively. It is also worth to notice that the Mean and 
Median Imputation techniques have a few outliers reaching 
an R2 above 0.80, this is happening with features skewed 
toward one value (low variance in the values), hence closer 
to the mean (median) of the imputed one.  
 

 
Figure 3 Boxplot for the R2 measure on the 57 imputed 

variables. 

The R2 for each missing feature is also presented in Figure 
4. As it can be seen, the prediction accuracy of the D-NNI 
is always greater of those provided by the LRI and KNNI. 
For the Mean (Median) Imputation, the D-NNI is better in 
51 out of 57 cases, while still being comparable in the six 
remaining features (pct_gt_ly_amer_posa_h, 
pct_gt_ly_emea_posa_h, etc. (see Figure 4)). Figure 5 
shows one of the best (gt_ly_h) and worst 
(pct_gt_stay_month_4_h) imputed features for the D-NNI. 
It illustrates the NN ability to predict with high accuracy 
continuous features (Figure 5a), while struggling with the 
zero inflated ones (Figure 5b) (but still showing better 
imputation accuracy compared to the other models). 
Furthermore, in Table 6 the running times over 10 runs for 
the five imputation techniques are displayed when using 
the following Amazon Web Service cloud cluster 
configuration: Master (r4.xlarge, 30gb, 4 cores) and  8 
Workers (15gb, 8 cores). The average and standard 
deviation in minutes are reported, showing the D-NNI as 
the slowest method to impute, with a large variance across 
different runs (depending on the convergence speed for the 
training phase). The second slowest method is the LRI. 
Here, the 57 features containing missing values are 
independently fitted, reason for the achieved imputation 
speed. It would be expected a linear decrease in speed using 
up to 57 workers (where each node of the cluster is fitting 
a different feature). The fastest imputation models 
appeared to be the Mean (Median) Imputation, where the 
prediction only finds the average (median) of each missing 
feature. The KNN-I speed is not reported as the imputation 
was not possible with the considered cluster configuration 
(not enough memory to fit the N2 pair matrix). When 
increasing the cluster size to 20 nodes, the KNN-I 
imputation took 40 minutes, with a standard deviation of 8 
minutes, mainly due to communication latency among the 
workers. 
 

Table 6 Average and std run time (in minutes) over 10 runs 

 D-NNI LRI KNNI Mean 
Imputation 

Median 
Imputation 

Avg 
(Std) 

24 
(±10) 

12 
(±5) 

- 
- 

< 1        
(± 0) 

< 1         
(± 0) 

 
To measure the D-NNI sensitivity to the batch size and the 
number of workers, we consider a grid of values from 10 
to 70 for the first parameter, and 2 to 8 for the second one. 
For each training run we compute the ratio given with 
Equation 6. This represents the achieved speedup, relative 
to training on a single node (sequential NN with SGD). In 
Table 7 we report the imputation speedup for the D-NNI 
model under 21 different settings. Table 7 exhibits several 
trends, with the top row representing the case of two 
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machines. As it can be seen, the speedup decreases when 
incrementing the batch size, which is due to the training 
taking the largest part of the total computational time, 
while the communication between nodes is negligible. The 
same trend still holds in the case of 4 machines (row 2). In 
the 3rd row, the trend shows reduction of the speedup up to 
the batch size of 50%. The subsequent increase of the ratio 
(for 60% and 70%) could be due to the time being evenly 
split between training and communication, and from 
randomness due to fluctuation in the convergence of the 
optimization process. Another interesting trend can be 
observed when inspecting the table by columns. Is true 
almost for all cases that the use of 4 nodes gives the best 
speedup over 2 and 8. 
This could be explained by the quantity of data used for 
training. When a certain threshold for the number of 
workers is passed, the overhead for communication and 
synchronization can become larger than the actual 
processing time. This is enforced by the fact that the trend 
is less accentuated when moving toward bigger batches. 
For 40% and 50%, the speedup for 4 and 8 nodes is almost 
identical, while for 8 nodes the speedup is higher when 
using more than 50% of data in each batch. 

 
Table 7 Speedup ratio of the NN compared to the sequential 
model, for number of samples in batch (10% to 70%) against 

number of workers (2 to 8) 

 10 20 30 40 50 60 70 
2 2.89 2.40 1.69 1.45 1.27 1.21 1.12 
4 3.85 3.62 2.13 2.21 1.97 1.93 1.68 
8 3.35 2.95 1.96 2.12 1.71 3.06 2.63 

7. Conclusion 

The missing data problem in big data context is 
investigated and a novel imputation approach using 
Distributed Neural Networks is proposed. The D-NNI 
framework is implemented as an additional stage in the 
Spark pipeline, ensuring that the missing data are imputed 
before applying the machine learning techniques. The D-
NNI is tested on a real world Recommender System dataset 
composed of 400 thousand samples and more than 600 
features (of which 57 historical characteristics containing 
missing values). The approach showed improved 
performance (R2 metric over the 57 missing features) when 
compared to univariate benchmarks (Mean and Median 

Figure 4 R2 metric for the 57 missing features. The prediction accuracy of each feature is independently showed for the five techniques. 
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Figure	5	Predicted	(x-axis)	and	observed	(y-axis)	values	for	the	D-NNI.	Figure	5a	(left)	shows	the	historical	yearly	gross	transactions	of	
each	property,	while	Figure	5b	(right)	depicts	the	yearly	percentage	transactions	for	one	month	(April). 



imputation by Location) and state-of-the-art techniques 
(KNN-I and LRI). Furthermore, a speedup analysis has 
also been carried to test the D-NNI scalability when using 
10% to 70% of the data as mini-batches for the training 
phase, over 2 to 8 machines when compared to the 
sequential Neural Networks implementation. The reported 
results indicate that the D-NNI method is a viable option 
for the imputation of missing data when the considered 
datasets do not fit in the memory of one machine.  
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