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Abstract— Continuous electronic fetal monitoring (EFM) is 
used worldwide to visually assess whether a fetus is exhibiting 
signs of distress during labor, and may benefit from an 
emergency operative delivery (e.g. Cesarean section). 
Previously, computerized EFM assessment that mimics clinical 
experts showed no benefit in randomized clinical trials. 
However, as an example of routinely collected ‘big’ data, EFM 
interpretation should benefit from data-driven computational 
approaches, such as deep learning, which allow automated 
evaluation based on large clinical datasets.  

   Here we report our investigation of long short term memory 
(LSTM) and convolutional neural networks (CNN) in analyzing 
EFM traces from over 35,000 labors for the prediction of fetal 
compromise. Of these, 85% are used for training with cross-
validation and the remainder are set aside for testing. The results 
are compared with Clinical practice (reason for operative 
delivery recorded as fetal distress) and an earlier prototype 
system for computerized analysis of EFM (OxSys 1.5), developed 
on the same data. We demonstrate that CNN outperforms 
LSTM, Clinical practice, and OxSys 1.5 in predicting fetal 
compromise, with a sensitivity of 42% (30%, 34%, and 36% for 
the others, respectively), at comparable or lower false positive 
rates. We also show that increasing the size of the training set 
improves the sensitivity and stability of CNN’s performance on 
the testing set. When tested on a small open-access external 
database, CNN moderately improves on the performance of 
published feature extraction based methods.  
  We conclude that CNN could play an important role in the field 
of automated EFM analysis, but requires further work. 

I. INTRODUCTION 

Electronic fetal monitoring (EFM) is used in labor aiming 
to detect fetuses at risk of distress who might benefit from an 
emergency operative delivery (Caesarean or instrumental 
vaginal delivery). However, visual interpretation is unreliable 
and complex EFM graphs, that continuously display the fetal 
heart rate and uterine contractions, remain poorly understood 
(Fig. 1). This has a significant impact: in the UK alone, every 
year, about 220 healthy babies die [1] and about 1,000 sustain 
brain injury [2] during labor at term. Nearly 50% of the NHS 
litigation bill is due to obstetric claims (£3.1bn in 2000-10), 
most of which relate to shortcomings in labor management 
and electronic fetal monitoring (EFM) interpretation [3].  

A few classic EFM patterns have been empirically 
identified and, for certain EFM patterns, the disagreement in 
visual interpretation between experts reaches 100% [4]. 
Computerized detection of such classic patterns, mimicking 
clinical visual assessment, is commercially available, but has 
not shown benefit in randomized clinical trials [5, 6]. 
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Figure 1.  Electronic fetal monitoring (EFM) in labor (a 30min snippet) 

We have acquired a uniquely large and detailed cohort of 
routinely collected data during labor at Oxford (all monitored 
births between Apr’93 and Dec’11). We have already 
developed a basic computerized data-driven prototype for 
EFM evaluation: OxSys 1.5 [7]. It works comparable to 
clinical practice but is based only on a few clinical and EFM 
features and further improvements are needed.  

In this study, we explore, for the first time, deep learning 
methods for the evaluation of EFM, without pre-defined 
feature extraction.  

II. DATA AND METHODS 

A. Data 
We have previously discussed and published the main 

characteristics of the Oxford archive, including the definition 
of Clinical practice which uses the reason for operative 
delivery (fetal distress vs. other) to the define true and false 
positives [7]. Digitized EFM records were available in a 
linked form with relevant clinical details. For this study, we 
analyzed the set of 35,429 deliveries comprising singleton 
babies with gestation ≥36 weeks; EFM record in labor; cord 
gas analyses at birth; no congenital abnormalities or breech 
presentation. Signal loss was linearly interpolated and the data 
smoothed down to 0.25Hz. Validated cord gas analyses at 
birth gave details of fetal blood oxygenation at the time of 
birth. There were 1,470 compromised (either severe 
compromise or arterial cord pH<7.05) and 33,959 healthy 
newborns, yielding a 4.15% incidence rate (detailed 
definitions are given in [7]). We used 85% of the data (30,115 
cases) for training and the remaining ones (5,314) were set 
aside for testing. The testing EFMs were identified by a 
random selection of 15% of cases within each outcome group, 
ensuring similar rates of compromise in training and testing.  

We analyzed the last hour of the EFM recording (900 data 
points for fetal heart rate and 900 data points for uterine 
contractions at 0.25Hz). There were 1,796 traces shorter than 
one hour and zeros were added to these at the beginning of the 
trace to obtain 900 data points. Contraction signals of the 
EFM commonly have poor quality due to technical limitations 
of the monitoring devices. To avoid overloading the network 
with noise, we assessed the contraction signals with an 
established method [8] and imposed a restriction: >40min of 
acceptable quality, of which >20min is of excellent quality. 

 



 

 
 
Only 24% of EFM records met this condition and were used 
in the networks, whereas the remainder were inputted as zero.  

To avoid overfitting, we adopted a five-fold cross 
validation during training. The average prediction of the five 
models was used as outcome for the test set patterns. To tackle 
the problem of unbalanced training dataset (4% compromised 
babies vs. 96% healthy ones), a weighted error function was 
adopted, such that an error in classifying one compromised 
fetus counts as heavily as 24 misclassified healthy fetuses. 

The methods were evaluated using widely accepted 
performance metrics: Area under the ROC curve (AUC); True 
Positive Rate (TPR); and False Positive Rate (FPR). Finally, 
we tested the models on the 552 traces in the Prague/Brno 
open-access database (CTU-UHB) [9], created to provide 
researchers with independent EFM data.  

B. Long Short Term Memory Networks  
We adopted the Long Short Term Memory (LSTM) model 
presented in [10]. The main advantage of this architecture is 
its ability to capture both long and short time dependencies in 
time series, which have proven to be effective in many 
domains (including medical applications) [11]. We used a 
single layer LSTM with two inputs: fetal heart rate and 
contraction signals; and two outputs: healthy and 
compromised newborns. The LSTM architecture included 
hyperbolic tangent as a hidden activation function and a hard 
sigmoid as a recurrent activation (default activation functions 
for LSTM, as advised in [12]). To get a binary class 
probability, a softmax function was used in the output layer. 
The data was normalized before being inputted in the LSTM. 

C. Convolutional Neural Networks 
The use of Convolutional Neural Networks (CNN) is another 
well-studied branch of deep learning, particularly suitable 
when learning from large amounts of raw data [13, 14]. To 
exploit the time structure of the input data, we implemented 
CNN that perform convolutions on overlapping sliding 
windows. The input layer size of 2x900 points corresponded 
to the last hour of fetal monitoring at 0.25Hz. A 12-layer CNN 
was chosen, given that the input size is halved by a max-
pooling layer for every two layers. The model comprised five 
convolutional layers (with a ReLU default activation 
function, as advised in [15]), interleaved by five max pooling 
layers. This also determined maximum length of 29 kernels 
(input: 900; 1st conv: 450; 2nd conv: 225; 3rd conv: 113; 4th 
conv: 57, and the 5th conv: 29). The last max-pooling layer 
was then flattened and fed as input to a fully connected layer. 
As in the LSTM, to get a class probability, a softmax function 
was used in the output layer. Furthermore, dropout (to avoid 
overfitting) and batch normalization (normalizing the outputs 
of each activation layer) were used as in a standard CNN [15]. 

D. Bayesian Hyper-Parameters Optimization 
Bayesian optimization uses previous observations of a loss 

function f, to determine the next (optimal) point to sample [16]. 
Firstly, using previously evaluated points x1:n, a posterior 
expectation of the landscape of f is computed. Secondly, the 
loss f at a new point xnew that maximizes some utility of the 

expectation of f is sampled. The utility specifies which regions 
of the domain of f are optimal to sample from. These steps are 
repeated until a convergence criterion is met. To compute a 
posterior expectation, we needed a likelihood model for the 
samples from f and a prior probability model on f. In the 
Bayesian search, we assumed a normal likelihood with noise. 
For the prior distribution, we assumed that the loss 
function f can be described by a Gaussian process (GP). GP is 
a popular probability model, because it induces analytically 
tractable posterior distribution over the loss function. This 
allows updating our beliefs of f’s landscape, after the loss for 
a new set of hyper-parameters is computed. 

For both models we used Bayesian optimization with GP 
to maximize the models’ TPR at 15% FPR. This specific value 
for the FPR was chosen as the maximum allowed, in order not 
to exceed the FPR seen in clinical practice [7]. The 
optimization ran for 40 iterations, with an initial random 
search of 10 samples. We report the results from the best 
performing model on a 5-fold cross validation average. 

III. RESULTS 

A. Parameter optimization 
Table I shows the parameters used during the Bayesian 

Hyper-Parameters Optimization for the LSTM and CNN 
models. The optimal Wavelet De-noising was found to be 
small for the LSTM, indicating that the initial signal was 
smoothed additionally.  On the other hand, for the CNN, this 
was zero, indicating that no smoothing was required.  

TABLE I.  PARAMETERS FOR THE NEURAL NETWORK MODELS. 

Parameter Range 
optimized on 

Optimal value 
(model)  

Number of Convolutional Kernels [5, 50] 17 (CNN) 
Kernel Length in data points [5, 29] 29 (CNN) 

Wavelet De-noising [0, 2] 0.00 (CNN) 
0.52 (LSTM) 

Elastic net regularization [0.001, 0.01] 0.006 (LSTM) 
Number of neurons in the recurrent layer [10, 125] 124 (LSTM) 
Lookback - past minutes used during the 

training phase [5, 7.5, 10] 7.5 (LSTM) 

B. Training and testing (Oxford data) 
Table II shows the AUC and TPR (at a fixed 15% and 20% 

FPR) for training and testing sets. The CNN outperformed the 
LSTM in all proposed metrics and both models performed on 
the testing set similarly to their performance on the training 
set, showing they generalize well on unseen data. The ROC 
curves in Fig. 2 present a small gap in performance in the first 
0.1 FPR (easy to predict cases), while subsequently increasing 
difference for FPR of 0.1 to 0.2. The proposed deep learning 
architectures are also compared with the current clinical 
practice performance and a state-of-the-art algorithm in fetal 
monitoring (OxSys 1.5 [7]). Fig. 3 illustrates the FPR and 
TPR for the four compared techniques. The CNN showed 
better sensitivity, at a lower false positive rate, compared to 
clinical practice and OxSys 1.5. Lastly, an empirical 
experiment was carried out to test robustness and validate the 
importance of the amount of CNN training data. Fig. 4 shows 
the test sensitivity at fixed FPR achieved when using 10%, 
50%, and 100% of the data during training.  



 

 
 

 
Figure 2.  ROC curves (Oxford test set: 5,314 cases). 

 
Figure 3.  Comparison of the two deep learning models, OxSys 1.5 and 

Clinical practice o the test set (χ2 test for comparison of proportions). 
 

 
Figure 4.  Robustness of CNN with respect to the size of training dataset 

over 30 runs (FPR is fixed at 15%). 

TABLE II.  SELECTED TRAINING AND TESTING RESULTS FOR THE TWO 
NEURAL NETWORKS MODELS 

Model Data AUC TPR@15% FPR TPR@20% FPR 
CNN Train 0.73 0.44 0.52 

Test 0.68 0.36 0.45 
LSTM Train 0.68 0.41 0.46 

Test 0.61 0.30 0.34 
AUC: Area Under the ROC Curve; TPR: True Positive Rate; FPR: False Positive Rate 

 

C. Testing (external open-access dataset, CTU-UHB) 
In order to test and validate our approach on publicly 

available data (Oxford data has restricted access) and 
compare the results with other authors, we report our findings 
on the CTU-UHB dataset. Table III presents the LSTM and 
CNN results from two published methods [17, 18]. The deep 
learning methods outperformed them but it is important to 
note that no direct comparison is possible due to: a smaller 
subset of 420 EFMs used in [17]; training done with ‘leave-
2%-out’ and no separate data used for testing in [18]. Fig. 5 
shows the ROC curves for our two models. 

TABLE III.  COMPARISON ON THE CTU-UHB DATASET (552 LABORS).  

Model True Positive 
Rate (TPR) 

False Positive 
Rate (FPR) 

CNN 0.55 0.14 
LSTM 0.60 0.14 

Spilka et al. [17] (MADdtrd, b0, H)  0.40 0.14 
CNN 0.63 0.17 

LSTM 0.65 0.17 
Spilka et al. [17] (MADdtrd, b0, c1)  0.60 0.17 

CNN 0.70 0.22 
LSTM 0.72 0.22 

Georgoulas et al. [18] (MMC) 0.68 0.22 
CNN 0.85 0.35 

LSTM 0.80 0.35 
Georgoulas et al. [18]  (F-measure) 0.72 0.35 

 

 
Figure 5.  ROC curves (CTU-UHB testing set: 552 cases). 

IV. DISCUSSION 

This work presents a first application of deep learning 
methods on data from continuous EFM during labor. The 
motivation was to move away from classic feature extraction 
approaches and examine whether deep learning has the 
potential to detect information in the EFM that is currently 
‘hidden’. EFMs of over 30,000 births were used for training 
and over 5,000 were set aside for testing. A small external 
open-access database was also used for external testing and 
comparison with published methods from other groups. 

Two deep learning architectures were investigated: LSTM 
and CNN. Both methods showed good generalizability – 
retaining similar performance on testing and training (Table 
II). On the Oxford data, CNN performed better than the 



 

 
 
LSTM (Table II, Fig. 2, Fig. 3), but LSTM was slightly better 
on the CTU-UHB data (Table III). Also, on the Oxford testing 
set, CNN outperformed the results of clinical practice (Fig.3) 
and showed robust performance (Fig. 4). As can be seen from 
Fig. 4, the sensitivity of CNN increased and its variance 
decreased with larger size of the training set. Direct 
comparison with OxSys 1.5 suggested that CNN achieved 
better results, but this must be interpreted with caution 
because OxSys 1.5 is based on the entire dataset and analyzes 
the entire EFM trace, incorporating clinical risk factors. The 
CNN’s TPR of 44% @15%FPR (Fig. 3) is significantly 
higher than the TPR in clinical practice (31%) but needs to 
exceed 60% if we want tangible clinical benefits. 

Both LSTM and CNN performed better on the external 
testing set CTU-UHB (552 births) (Table III) than on the 
Oxford testing set (5,314 births) (Table II). The CTU-UHB 
dataset is ‘easier’ than the Oxford one for the automated 
methods to analyze: firstly, because it is smaller and less 
heterogeneous (the Oxford data span many years of varying 
clinical practice); and secondly, because it defined 
compromise only as acidemia (while the Oxford data defined 
compromise as a more clinically relevant outcome of 
acidemia and/or severe compromise [7]).  

The maximal CNN kernel length was set to 29 data points 
(Table II) and future work will focus on changing the 
architecture to allow larger kernels. And for LSTM, the 
optimal number of neurons here was 124 (where 125 was the 
maximum allowed) thus higher values may be beneficial.  

LSTM are widely used for time series forecasting, but 
have two important limitations in our setting. Firstly, we 
require one risk assessment at the end of the series (i.e. 
classification task) and the error only depends on the last 
output of the LSTM whereas, in forecasting, a prediction is 
required for every time step in the series and the learning is 
based on the error calculated through the whole time span. 
Secondly, the EMF records are large and cause problems such 
as vanishing gradients during backpropagation. On the other 
hand, CNN have proven suitable for both spatial and temporal 
data. The CNN is able to handle long time series using moving 
filters and max-pooling (i.e., the size of the input is halved at 
each convolution allowing more compact representation of 
the feature space to be learned each time). 

Limitations of this work are the use of EFM signals at 
0.25Hz; analysis only of the last hour of EFM; no account of 
the labor stage (a known confounder). Even with these 
limitations, the deep learning models demonstrate potential to 
improve the results of OxSys 1.5 and other feature-based 
data-driven techniques. In particular, we expect further 
significant improvements with larger training datasets and 
network sizes; and with incorporation of clinical risk factors.  
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